Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
Это доказательство — пример упорядоченного процесса мысли. Каждое утверждение соотносится с предыдущим неоспоримым образом; именно поэтому мы говорим скорее о «доказательстве», чем об «очевидном свидетельстве». Целью математики всегда являлось нахождение строгого доказательства какого-либо неочевидного утверждения. Сам факт строгого соотношения шагов доказательства указывает на то, что должна существовать определенная схема, связывающая эти утверждения в одно логическое целое. Об этой схеме лучше всего рассуждать при помощи специального нового лексикона, состоящего из символов, годных только для описания утверждений о числах. Таким образом, мы сможем рассмотреть версию доказательства в «переводе». Это будет набор утверждений, строго соотносящихся между собой; причем эти отношения всегда можно описать. Утверждения, поскольку они записаны компактными, стилизованными символами, выглядят как определенные структуры. Другими словами, при прочтении вслух мы видим, что эти утверждения говорят о числах и их свойствах; записанные же на бумаге, они выглядят как абстрактные структуры. Таким образом, последовательно, строка за строкой прочитанная схема доказательства начинает казаться постепенной трансформацией структур по определенным типографским правилам.
Минуя бесконечностьХотя Эвклид доказывает, что каждое число обладает определенным свойством, он, тем не менее, не рассматривает в отдельности каждый из бесконечно многих случаев. Для этого он использует выражения типа «каким бы числом N ни было», или «неважно, какое N мы возьмем». Мы могли бы перефразировать доказательство, используя фразу «все N». Умело обращаясь с подобными выражениями, мы всегда можем избежать возни с бесконечным количеством утверждений. Вместо этого мы будем иметь дело лишь с двумя-тремя понятиями, например, такими, как слово «все». Сами по себе конечные, они воплощают в себе бесконечность и поэтому позволяют нам обойти такое препятствие, как необходимость доказывать бесконечное количество фактов.
Мы используем слово «все» по-разному, что определено нашим мыслительным процессом: существуют правила, которым подчиняется наш выбор. Возможно, что мы не сознаем этого и утверждаем, что руководствуемся значением слова; однако это лишь иносказание, выражающее все ту же идею; наше мышление подчиняется определенным негласным законам. Всю жизнь мы используем слова как часть определенных структур; но, вместо того, чтобы называть эти структуры «правилами», мы приписываем их возникновение и развитие «значениям» слов. Это открытие было решающим шагом на пути формализации теории чисел.
Рассмотрев доказательство Эвклида более внимательно, мы увидели бы, что оно складывается из многих крохотных, почти бесконечно малых шагов. Если бы мы записали их одно за другим, доказательство показалось бы невероятно сложным. Оно кажется нам легче, когда несколько шагов складываются на манер телескопа и составляют одно-единственное предложение. Если бы мы рассмотрели это доказательство, как в замедленной съемке, перед нами предстали бы отдельные «секции». Другими словами, деление может идти лишь до определенного предела, за которым мы сталкиваемся с «атомной» природой мыслительных процессов. Доказательство может быть разбито на серию крохотных, но отдельных этапов; рассмотренные «издалека», они сливаются в непрерывный поток. В главе VIII я приведу пример такой «атомизации» доказательства, и вы увидите, какое множество шагов в нем участвует. Возможно, что это вас не удивит. В мозгу у Эвклида, когда он изобретал свое доказательство, работали миллионы нейронов, многие из которых давали сотни импульсов в секунду. Чтобы произнести одно-единственное предложение, в мозгу задействованы сотни тысяч нейронов. Если мысли Эвклида были настолько сложны, логично ожидать, что его доказательство также состоит из огромного количества шагов! (Хотя, скорее всего, прямой связи между нейронной активностью мозга и доказательством в нашей формальной системе не существует, они, тем не менее, сравнимы по своей сложности — словно природа желает сохранить сложность доказательства бесконечного множества простых чисел, несмотря на то, что это доказательство представлено в таких различных системах.)
В последующих главах мы разработаем такую формальную систему, которая (1) включает стилизованный лексикон, способный выразить все высказывания о натуральных числах и (2) имеет правила, соответствующие всем необходимым типам рассуждений. При этом возникает вопрос, сравнима ли мощность подобных формальных правил (по крайней мере, в сфере теории чисел) с мощностью тех правил, которыми мы регулярно пользуемся в наших мыслительных процессах. Иными словами, существует ли теоретическая возможность, используя формальную систему, достичь уровня наших мыслительных способностей?
Соната для Ахилла соло
Звонит телефон — Ахилл берет трубку.
Ахилл: Алло, Ахилл слушает.
Ахилл: А, здравствуйте, г-жа Черепаха. Как дела?
Ахилл: Кривошея и чихиллит? Что такое чихи… — а, теперь понимаю. Будьте здоровы!… Что и говорить, неприятная комбинация. Как это вы ухитрились такое подцепить?
Ахилл: И долго вы ее так продержали?
Ахилл: Еще на самом сквозняке — не удивительно, что вам в шею надуло!
Ахилл: Что же вас заставило так долго там проторчать?
Ахилл: Многие из них удивительные? Какие, например?
Ахилл: Фантасмагорические чудища? Что вы имеете в виду?
Ахилл: И вам не страшно было в такой компании?
Ахилл: Гитара? Вот странно — откуда взялась гитара среди этих диковинных созданий. Кстати, вы играете на гитаре?
Ахилл: Ах, для меня это одно и то же.
Ахилл: Вы правы удивительно, как это я сам до сих пор не заметил, в чем разница между гитарой и скрипкой. Кстати о скрипках: не хотите ли вы заглянуть ко мне и послушать сонату для скрипки соло вашего любимого композитора, И. С. Баха? Я только что купил отличную запись. Поразительно, как это Баху удалось, используя одну-единственную скрипку, создать такую интересную вещь.
Ахилл: Головная боль тоже? Бедняжка… Пожалуй, вам лучше лечь в постель и постараться заснуть.
Ахилл: Понятно. Овец считать уже пробовали? Где-то у меня была целая картотека подобных трюков — говорят, они здорово помогают от бессоницы.
Ахилл: Ах, да. Я отлично понимаю, что вы имеете в виду — я это тоже пробовал. Может быть, если уж эта задачка так застряла у вас в голове, вы поделитесь ею со мной, чтоб и я мог попробовать свои силы?
Ахилл: Слово, внутри которого встречаются подряд буквы «Р», «Т», «О», «Т», «Е»… Г-м-м… Как насчет «ретотра»?
Ахилл: Ах, какой стыд… Конечно вы правы — я опять все перепутал. К тому же в слове «реторта» эти буквы все равно идут задом наперед.
Ахилл: Уже несколько часов? Хорошенькую вы мне задали задачку… Где вы откопали такую дьявольскую головоломку?
Ахилл: Вы имеете в виду, что он только делал вид, что размышляет над эзотерическими буддистскими проблемами, когда на самом деле он пытался придумать сложные словесные головоломки?
Ахилл: Ага! Улитка знала, чем он занимается. Как же вам удалось с ней переговорить?
Ахилл: Вы знаете, я как-то слышал похожую головоломку. Хотите, я вам ее задам? Или это еще хуже вас отвлечет?
Ахилл: Согласен — хуже уже вряд ли будет. Так вот: какое слово начинается с «КА» и кончается на «КА»?
Ахилл: Очень остроумно — но это нечестно. Я совершенно не это имел в виду!
Ахилл: Согласен, это слово выполняет условие; но все равно это какое-то дегенеративное решение.
Ахилл: Абсолютно верно! Как вам удалось так быстро найти ответ?
Ахилл: Это — еще один пример того, какой полезной может оказаться картотека трюков от бессоницы. Прекрасно! Но я все еще блуждаю в потемках с вашей задачкой о «PTOTE».
Ахилл: Поздравляю — теперь вам, может быть, удастся заснуть. Скажите же мне решение!
Ахилл: Вообще-то я не люблю подсказок, но на этот раз ладно, валяйте.
Ахилл: Не понимаю. Что вы имеете в виду под «рисунком» и «фоном»?
Ахилл: Разумеется, я знаком с «Мозаикой II». Я знаю ВСЕ работы Эшера. В конце концов, это мой любимый художник! Кстати, репродукция «Мозаики II» висит прямо у меня перед носом.
Ахилл: Всех черных зверей? Конечно, вижу!
Ахилл: Верно: их «негативное пространство» — то, что остается свободным — определяет белых зверей.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.