» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






  (3)   <P э Q> разделение

  (4)   <~Q э ~P> контрапозиция

  (5)   <~P э ~Q> разделение

  (6)   <~Q э ~~P> контрапозиция

  (7)   [ снова проталкивание

  (8)     ~Q посылка

  (9)     <~Q э ~P> перенос строки 4

(10)     ~P отделение

(11)     <~Q э ~~P> перенос строки 6

(12)     ~~P отделение (строки 8 и 11)

(13)     <~P Λ ~~P> объединение

(14)     ~<P V ~P> Де Морган

(15)   ] выталкивание

(16)   <~Q э ~<P V~P>> правило фантазии

(17)   <<P V ~P> э Q> контрапозиция

(18)   [ проталкивание

(19)     ~P посылка (и результат!)

(20)   ] выталкивание

(21)   < э > правило фантазии

(22)   <P V ~P> правило замены

(23)   Q отделение (строки 22 и 17)

(24) ] выталкивание


Этот пример показывает, насколько мощно исчисление высказываний. Всего лишь за 24 шага мы логически вывели, что Q — иными словами, головы будут отрублены! (Зловещая примета: последнее использованное нами правило было правилом «отделения»…) Теперь, скажете вы, нет смысла продолжать коан, так как исход уже известен. Однако я передумал и не буду его прерывать — в конце концов, это настоящий дзен-коан! Итак, вот конец этого рассказа:

Оба монаха продолжали медитировать как ни в чем не бывало, словно они ничего не слышали. Тогда Ганто опустил топор и воскликнул: «Вы — настоящие дзен-буддисты!» Затем он вернулся к Токусану и рассказал о случившемся. «Я понимаю вашу идею», — сказал тот, — «но скажите мне, какова их идея?» «Тозан мог бы принять их в ученики, — ответил Ганто, — но они не должны быть приняты в ученики Токусаном».[14]

Понимаете ли вы мою идею? А как насчет идеи дзена?

Имеется ли разрешающий алгоритм для теорем?

Исчисление высказываний дает нам набор правил для производства таких высказываний, которые были бы истинными в любом из возможных миров. Именно поэтому все его теоремы звучат так просто, кажется, что они совершенно лишены содержания! С такой точки зрения, исчисление высказываний должно казаться пустой тратой времени, поскольку оно сообщает нам абсолютно тривиальные вещи. С другой стороны, это делается путем определения формы универсально истинных высказываний, что представляет основные истины вселенной в новом свете. Они не только фундаментальны, но и регулярны: их можно произвести, используя определенный набор типографских правил. Иными словами, все они сделаны из одного теста. Можете поразмыслить над тем, возможно ли произвести также и дзен-буддисткие коаны, пользуясь набором типографских правил.

Весьма важным здесь является вопрос о разрешающей процедуре — а именно, существует ли некий механический метод отличения теорем от не-нетеорем? Если да, то это будет означать, что теоремы исчисления высказываний не только рекурсивно перечислимы, но и рекурсивны. Оказывается, что алгоритм разрешения существует, и довольно интересный — таблицы истинности. Изложение этого метода увело бы нас слишком далеко в сторону; вы можете найти его почти в любой книге по логике. А как насчет дзен-буддистских коанов? Может ли существовать такая механическая процедура разрешения, которая отличала бы настоящий дзен-коан от всех остальных вещей?

Откуда мы знаем, что система непротиворечива?

До сих пор, мы только предполагали, что все теоремы, интерпретированные должным образом, производят истинные высказывания. Но знаем ли мы это наверняка? Можем ли мы это доказать? Иными словами, заслуживают ли наши интерпретации («и» для «Λ» и так далее) того, чтобы именоваться «пассивными значениями» символов? На это существуют два различных взгляда, которые можно назвать «осторожным» и «неосторожным». Я представлю это взгляды так, как я их понимаю; пусть их выразителей зовут, соответствено, «Осторожность» и «Неосторожность».

Осторожность: Мы будем знать наверняка, что при нашей интерпретации все теоремы получаются истинными, только тогда, когда сможем это доказать. Это вдумчивый и осторожный способ действия.

Неосторожность: Напротив, ОЧЕВИДНО, что все теоремы получаются истинными. Если вы в этом сомневаетесь, взгляните еще раз на правила системы. Вы увидите, что каждое правило заставляет символ действовать точно также, как должно действовать слово, им представляемое. Например, правило объединения заставляет символ «Λ» действовать как «и»; правило отделения заставляет «э» действовать также, как слова «если … то», и так далее. Если только вы не похожи в этом отношении на Черепаху, то легко узнаете в каждом правиле кодификацию схем, которыми пользуетесь в собственных мыслях. Поэтому, если вы доверяете собственным мыслям, вы ОБЯЗАНЫ верить в то, что все теоремы в интерпретации выходят истинными. Таково мое мнение. Я не нуждаюсь в дальнейших доказательствах. Если вы считаете, что какая-нибудь теорема может получиться ложной, значит вы думаете, что какое-то из правил неверно. В таком случае, покажите мне, какое именно?

Осторожность: Не могу, поскольку я не знаю точно, что там есть неверные правила — поэтому я не могу указать вам на одно из них Все же я могу вообразить себе следующую сцену. Следуя правилам, вы выводите теорему — скажем, x. Между тем, я, также следуя правилам, вывожу другую теорему — и предположим, у меня вышло ~x. Можете ли вы представить себе такое?

Неосторожность: Хорошо — представим себе, что такое произошло. Чем это вам помешает? Скажем, мы обе играем с системой MIU; у меня получилась теорема x, а у вас — xU. Можете вы представить такое?

Осторожность: Разумеется: и MI, и MIU — теоремы.

Неосторожность: И вас это не смущает?

Осторожность: Конечно, нет. Ваш пример просто смешон, поскольку теоремы MI и MIU не ПРОТИВОРЕЧАТ одна другой, в то время как строчки x и ~x в исчислении высказываний противоречивы.

Неосторожность: Хорошо — если только вы решили интерпретировать «~» как «не». Но что заставляет вас думать, что « должно быть интерпретировано именно так?

Осторожность: Сами правила. Их них видно, что единственной возможной интерпретацией для «~» является «не», единственной возможной интерпретацией для «Λ» — «и» и так далее.

Неосторожность: Иными словами, вы считаете, что правила описывают значения слов?

Осторожность: Именно так.

Неосторожность: И, несмотря на это, вы все еще цепляетесь за мысль, что обе x и ~x могут быть теоремами? Почему бы вам заодно не предположить, что ежи — это жабы, или что 1 равняется 2, или что луна сделана из зеленого сыра? Я, со своей стороны, не хочу даже и думать, что основные ингредиенты моего мыслительного процесса могут быть ошибочными — иначе мне пришлось бы усомниться в собственном анализе всего этого вопроса, и я бы совершенно запуталась.

Осторожность: Ваши аргументы притянуты за уши. Все же мне хотелось бы увидеть ДОКАЗАТЕЛЬСТВО того, что все теоремы истинны, или того, что x и ~x не могут быть теоремами одновременно.

Неосторожность: Желаете доказательства? По-моему, вы более хотите убедиться в непротиворечивости исчисления высказываний, чем в вашем собственном душевном здоровье. Любое мыслимое доказательство включало бы более сложные операции, чем те, что возможны в самом исчислении высказываний. И что бы это доказало? С вашим желанием доказать непротиворечивость исчисления высказываний вы напоминаете мне человека, который захотел выучить русский и потребовал для этого словарь, определяющий все простые слова через более сложные…

Снова Кэрролловский Диалог

Этот небольшой спор показывает, как трудно использовать логику и рассуждеения для защиты самой логики. В какой-то момент вы упираетесь в стенку, и вам ничего не остается, кроме как выкрикивать: «Я знаю, что я прав!» Мы снова столкнулись с вопросом, который Льюис Кэрролл так ярко проиллюстрировал в своем Диалоге: продолжать защищать схему собственного мышления до бесконечности невозможно. Рано или поздно наступает момент, когда приходится в нее просто поверить.

Систему рассуждений можно сравнить с яйцом. Его внутренность защищена скорлупой — но чтобы куда-то это яйцо послать, вы на нее не надеетесь. Вы упаковываете яйцо в контейнер, выбранный в соответствии с трудностью предстоящего путешествия. Если вы хотите действовать более осторожно, можете даже уложить яйцо в несколько вложенных одна в другую коробок. Однако сколько бы коробок вы не использовали, всегда можно вообразить себе, что происходит катастрофа и яйцо все же разбивается. Точно так же мы никогда не можем дать абсолютное, конечное доказательство того, что доказательства какой-либо системы истинны. Разумеется, мы можем представить доказательство доказательства, или доказательство доказательства доказательства — но нам всегда приходится принимать на веру состоятельность самой внешней из систем. Всегда возможно вообразить, что некая тонкость разрушит каждое из наших доказательств — и когда мы дойдем до «дна», то «доказанный» результат окажется вовсе не таким уж истинным. Это, однако, не означает, что математики и физики постоянно беспокоятся о том, что все здание математики может быть ложным. С другой стороны, когда люди сталкиваются с неординарными, или слишком длинными, или полученными на компьютере доказательствами, они начинают думать над тем, что же имеется в виду под этим почти святым понятием «доказательства».


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.