» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






* .......   236        2*3=6

( .......   362        кончается на 2 \

) .......   323        кончается на 3  |   эти

< .......   212       кончается на 2  |   три пары

> .......   213       кончается на 3  |   формируют

[ .......   312        кончается на 2  |   схему

] .......   313        кончается на 3 /

а .......   262       противоположно A (626)

' .......    163       163-простое число

Λ ......    161       «Λ»-«график» последовательности 1-6-1"

V ......    616       «V»-«график» последовательности 6-1-6

э ......    633       в некотором роде, из 6 следуют 3 и 3

~ .......   223       2+2 не 3

E .......   333       «E» выглядит как «3»

A .......   626       противоположно «A»- также «график» 6-2-6

: .......   636        две точки, две шестерки

пунк ....  611       особенное число (именно потому, что в нем нет ничего особенного)

Каждый символ ТТЧ соотнесен с трехзначным числом, составленным из цифр 1, 2, 3 и 6 таким образом, чтобы его было легче запомнить. Каждое такое трехзначное число я буду называть Геделев кодоном, или, для краткости, кодоном. Заметьте, что для b. с, d или е кодонов не дано, поскольку мы используем здесь строгую версию ТТЧ. Для этого есть причина, которую вы узнаете в главе XVI. Последняя строчка, «пунктуация», будет объяснена в главе XIV.

Теперь мы можем представить любую строчку или правило ТТЧ в новом наряде. Вот, например, Аксиома 1 в двух нотациях, новая над старой:

 626, 262, 636, 223, 123, 262, 111, 666

. A      a      :      ~     S     a     =      0


Обычная условность — использование пунктуации после каждых трех цифр — очень кстати совпала с нашими кодонами, облегчая их чтение.

Вот Правило Отделения в новой записи:

ПРАВИЛО: Если x и 212x633y213 являются теоремами, то у - также теорема.

Наконец, вот целая деривация, взятая из предыдущей главы; она дана в строгой версии ТТЧ и записана в новой нотации:

626,262,636,626.262,163,636,362,262,112,123,262,163,323,111,123,362,262,112,262,163,323 аксиома 3

. A    a     :     A     a     '     :     (     a    +     S    a     '     )   =    S    (     a     +    a      '    )

626,262,163,636,362,123,666,112,123,262,163,323,111,123,362,123,666,112,262,163,323 спецификация

. A    a     '     :     (     S    0     +    S    a     '      )    =    S     (     S    0     +    a     '     )

362,123,666,112,123,666,323,111,123,362,123,666,112,666,323 спецификация

. (     S    0     +    S    0      )    =    S     (     S    0    +     0    )

626,262,636,362,262,112,666,323.111.262 аксиома 2

.  A    а    :     (     а    +    0     )     =    а

362,123,666,112,666,323,111,123,666  спецификация

. (     S     0    +    0     )     =    S    0

123,362,123,666.112,666,323,111,123,123,666  добавить «123»

.  S   (      S    0     +    0    )     =     S    S    0

362,123,666,112,123,666,323,111,123,123,666  транзитивность

.  (    S    0     +    S     0     )    =     S    S    0

Обратите внимание, что я изменил название правила «добавить S» на «добавить 123», поскольку данное правило узаконивает именно эту типографскую операцию.

Новая нотация кажется весьма странной. Вы теряете всякое ощущение значения; однако, если потренироваться, вы сможете читать строчки в этой нотации так же легко, как вы читали строчки ТТЧ. Вы сможете отличать правильно сформированные формулы от неправильных с первого взгляда. Естественно, поскольку это настолько наглядно, вы будете думать об этом, как о типографской операции — но в то же время выбор правильно сформированных формул в этой нотации эквивалентен выбору определенного класса чисел, у которых есть также арифметическое определение.

А как же насчет «арифметизации» всех правил вывода? Они все еще остаются типографскими. Но погодите минутку! Согласно Центральному Предложению, типографское правило — все равно, что арифметическое правило. Ввод и перестановка цифр в числах десятичной записи — это арифметическая операция, которая может быть осуществлена типографским путем. Подобно тому, как добавление «О» справа от числа эквивалентно умножению этого числа на 10, каждое правило представляет собой компактное описание длинного и сложного арифметического действия. Таким образом, нам не придется искать эквивалентных арифметических правил, поскольку все правила уже арифметические!

Числа ТТЧ: рекурсивно счетное множество чисел

С такой точки зрения, приведенная выше деривация теоремы «362,123,666,112,123,666,323,111,123,123,666» представляет собой последовательность весьма сложных теоретико-численных трансформаций, каждая из которых действует на одно или более данных чисел. Результатом этих трансформаций является, как и ранее, выводимое число, или, более точно, число ТТЧ. Некоторые арифметические правила берут старое число ТТЧ и увеличивают его определенным образом, чтобы получить новое число ТТЧ, некоторые уменьшают старое число ТТЧ; другие правила берут два числа ТТЧ, воздействуют на них определенным образом и комбинируют результаты, получая новое число ТТЧ — и так далее, и тому подобное. Вместо того, чтобы начинать с одного известного числа ТТЧ, мы начинаем с пяти — одно для каждой аксиомы (в строгой нотации). На самом деле, арифметизированная ТТЧ очень похожа на арифметизированную систему MIU — только в ней больше аксиом и правил, и запись точных арифметических эквивалентов была бы титаническим и совершенно «непросветляющим» трудом. Если вы внимательно следили за тем, как это было сделано для системы MIU, у вас должно быть сомнений в том, что здесь это делается совершенно аналогично.

Эта «гёделизация» ТТЧ порождает новый теоретико-числовой предикат:

а — число ТТЧ.

Например, мы знаем из предыдущей деривации, что 362,123,666,112,123,666,323,111,123,123,666 является числом ТТЧ, в то время как число 123,666,111,666 числом ТТЧ предположительно не является.

Оказывается, что этот новый теоретико-численный предикат можно выразить некоей строчкой ТТЧ с одной свободной переменной — скажем, а. Мы могли бы поставить тильду впереди, и эта строчка выражала бы дополняющее понятие:

а — не число ТТЧ.

Теперь давайте заменим все а в этой второй строчке на символ числа ТТЧ для 123,666,111,666 — символ, содержащий ровно 123,666,111,666 S и слишком длинный, чтобы его здесь записывать. У нас получится строчка ТТЧ, которая, подобно МУМОНу, может быть интерпретирована на двух уровнях. Во-первых, она будет означать

123,666,111,666 — не число ТТЧ.

Но, благодаря изоморфизму, связывающему числа, ТТЧ с теоремами ТТЧ, у этой строчки есть и второе значение:

S0=0 не теорема ТТЧ.

ТТЧ пытается проглотить саму себя

Это неожиданно двусмысленное толкование показывает, что ТТЧ содержит строчки, говорящие о других строчках ТТЧ. Иными словами, метаязык, на котором мы можем говорить о ТТЧ, берет начало, хотя бы частично, внутри самой ТТЧ. И это не случайность; дело в том, что архитектура любой формальной системы может быть отражена в Ч (теории чисел). Это такая же неизбежная черта ТТЧ, как колебания, вызываемые в патефоне, проигрываемой на нем пластинкой. Кажется, что колебания должны вызываться внешними причинами, — например, прыжками детей или ударами мяча; но побочный — и неизбежный — эффект произведения звуков заключается в том, что они заставляют колебаться сам механизм, их порождающий. Это не случайность, а закономерный и неизбежный побочный эффект. Он свойствен самой природе патефонов. И так же самой природе любой формализации теории чисел свойственно то, что ее метаязык содержится в ней самой.

Мы можем почтить это наблюдение, назвав его Центральной Догмой Математической Логики и изобразив его на двухступенчатой диаграмме.

ТТЧ ==> Ч ==> мета-ТТЧ

Иными словами, у строчки ТТЧ есть интерпретация в Ч, а у высказывания Ч может быть второе значение — оно может быть понято как высказывание о ТТЧ.

G: строчка, говорящая о себе самой на коде

Эти интересные факты — только половина истории. Другая половина — интенсификация автореференции. Мы сейчас находимся в положении Черепахи, когда она обнаружила, что можно создать пластинку, разбивающую проигрывающий ее патефон. Вопрос только в том, какую именно запись надо ставить на данный патефон. Выяснить это непросто.

Для этого нужно найти строчку ТТЧ — мы будем называть ее «G» — которая говорит о себе самой, в том смысле, что — одно из ее пассивных значений — это высказывание о G.

В частности, этим пассивным значением окажется

«G- не теорема ТТЧ»

Я должен добавить, что у G есть и другое пассивное значение, являющееся высказыванием теории чисел; подобно тому, как МУМОН мог быть интерпретирован двояко. Важно то, что каждое пассивное значение — действительно и полезно, и никоим образом не бросает тень сомнения на второе значение. (Тот факт, что играющий патефон может вызывать колебания в самом себе и в пластинке, не отрицает того, что эти колебания — музыкальные звуки!)


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.