» » » » В Лаврус - Источники энергии


Авторские права

В Лаврус - Источники энергии

Здесь можно скачать бесплатно "В Лаврус - Источники энергии" в формате fb2, epub, txt, doc, pdf. Жанр: Прочее домоводство. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Источники энергии
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Источники энергии"

Описание и краткое содержание "Источники энергии" читать бесплатно онлайн.








При электролизе большая часть электроэнергии теряется в виде тепла при протекании тока через электролит. Кроме того, удельная производительность современных установок -- не более 0,5 литра водорода в час с одного см2. Это количество определяется самим характером электрохимических реакций, протекающих только на поверхности электродов. Если электролиз будет широко использоваться, недостатки этого метода, по-видимому, останутся.

Гораздо производительнее метод плазмохимии, использующий химическую активность ионизованного газа -- плазмы. В специальные установки -- плазмотроны подводят газы или пары различных веществ. Интенсивным электромагнитным полем в этих газах или парах создают электрические разряды, образуется плазма. Энергия электрического поля передается ее электронам, а от них -- нейтральным молекулам. Последние переходят в возбужденное, химически активное состояние.

Перспективны неравновесные плазмохимические системы, где электроны, разогретые электромагнитным полем до температур 10...15 тысяч градусов, избирательно передают энергию молекулам, а последние, распадаясь, образуют нужные химические продукты. При этом газ в целом остается практически холодным (его температура 300...1000oС). Важное преимущество этих систем -- объемный характер протекающих в них процессов. Большие скорости химических реакций в газовой фазе позволяют добиваться гигантской удельной производительности плазмотронов.

Прямое плазмохимическое разложение паров воды на кислород и водород в настоящее время малоэффективно. А вот углекислый газ оказался идеальным плазмохимическим объектом. Неравновесное возбуждение его молекулярных колебаний до 4...6 тысяч градусов приводит к тому, что богатые энергией молекулы отбирают ее у более бедных. Это влечет за собой резкое повышение скорости химических реакций и энергетической эффективности процесса. Коэффициент полезного действия при разложении углекислого газа на окись углерода и кислород превышает 80 процентов. Практически всю вкладываемую в разряд энергию удается направить на осуществление полезной химической реакции.

С учетом этого можно организовать двухстадийный цикл производства водорода:

на первой стадии осуществить плазмохимическое разложение углекислого газа;

на второй -- выполнить давно освоенную промышленностью реакцию взаимодействия окиси углерода с водяным паром.

В результате образуется водород и исходное вещество -углекислый газ. Таким образом, углекислый газ будет выполнять роль физического катализатора для получения водорода из воды и, не расходуясь, разрешит трудности, возникающие при разложении водяного пара. В итоге формируется плазмохимический цикл, в котором тратится только вода, а углекислый газ постоянно возвращается в процесс.

Производительность такой плазмохимической системы в десятки тысяч раз превзойдет эффективность электролизеров, стоимость же водорода окажется примерно такой же, как и при электролизе. Это, конечно, еще дорого. Сегодня практически весь водород, потребляемый промышленностью, производится за счет переработки природного газа.

В таких установках вместо одного энергоносителя получаем другой и используем его не для нужд энергетики, а для технологии. Такая схема выглядит ущербно. Поэтому исследовали такой обнадеживающий источник водорода, как сероводород, сопутствующий, в частности, обычным, прежде всего, глубинным месторождениям природного газа.

Многие беды в районах газоносных месторождений связаны с выбросами сероводорода или продуктов его переработки в атмосферу. Сейчас в промышленности в лучшем случае сероводород окисляют кислородом воздуха по методу Клаусса, разработанному еще в прошлом веке, и получают при этом серу, а водород связывается с кислородом. Недостаток этого, кстати, весьма дорогостоящего процесса очевиден: из сероводорода извлекают только серу, а водород переходит в воду.

Поэтому проводились эксперименты по диссоциации сероводорода в плазме, чтобы на одной стадии получать два продукта: водород и конденсированную серу.

Для этого сероводородную плазму заставляют вращаться с околозвуковой скоростью. Образующиеся в плазмотроне частицы серы выносятся при этом из объема реакции за время, недостаточное для осуществления обратной реакции. Центробежный эффект позволяет добиться значительного отклонения плазмохимической системы от термодинамического равновесия и снизить энергозатраты на получение кубометра водорода до десятков ватт. Такой водород оказывается дешевле электролизного примерно в 15 раз, и его уже можно широко использовать в энергетике и в промышленности.

Мы давно находимся на переломном рубеже. Всем ясно, что назрели изменения традиционной энергетической структуры в которой главенствовали нефть и уголь. Сегодня наиболее перспективным является природный газ, но его широкое использование связано с проблемами экологии. В обозримом будущем водород может придать энергетике безопасность и экологическую чистоту.

Глава 2

ХИМИЧЕСКИЕ ИСТОчНИКИ ТОКА

Первым источником тока, после изобретения электрофорной машины, был элемент Вольта названный в честь своего создателя. Итальянский физик А. Вольта объяснил причину гальванического эффекта, открытого его соотечественником Л. Гальвани. В марте 1800 г. он сообщил о создании устройства, названного в последствии "вольтов столб". Так началась эра электричества подарившая миру свет, тепло и опасность поражения электрическим током.

Именно гальванические (первичные) элементы позволили начать изучение электричества. В первой половине ХIХ века они являлись единственными источниками электрической энергии. До их появления были известны только законы электростатики, не существовало понятия электрического тока и его проявлений.

Уже в мае 1800 г. А. Карлейль и У. Николсон осуществили электролиз воды. В 1803 г. были открыты процессы электроосаждения металлов. В 1807 г. -- электролиз расплавов солей.

Дальнейшая хронология открытий:

1819 г. -- магнитное действие тока -- Х. Эрстед;

1820 г. -- взаимодействие проводников с током -- А. Ампер;

1827 г. -- закон Ома -- Г. Ом;

1831 г. -- закон электромагнитной индукции -- М. Фарадей;

1834 г. -- создание первого электродвигателя -- Б. Якоби;

1839 г. -- создание первого топливного элемента -- У. Гров;

1843 г. -- описано тепловое действие тока -- Дж. Джоуль;

1859 г. -- первый действующий кислотный свинцовый аккумулятор -- Г. Планте;

1860 г. -- первый эффективный генератор -- Ф. Хефнер-Альтенек [5].

В 1881 году на берегах Сены появился первый электромобиль. В нем использовались кислотные аккумуляторы. Только через 4 года появится первый автомобиль Даймлера и Бенца с двигателем внутреннего сгорания. Именно на электромобиле в 1899 году достигнут фантастический для того времени рекорд скорости -100 км/час.

После создания принципиально нового источника электрической энергии -- электромагнитного генератора -химические источники тока потеряли свое первостепенное значение. Генераторы превзошли своих предшественников по экономическим и техническим параметрам, но ХИТ продолжали совершенствоваться и развиваться как автономные источники для средств связи.

Химическими источниками тока называются устройства, в которых свободная энергия пространственно разделенного окислительно-восстановительного процесса, протекающего между активными веществами, превращается в электрическую энергию.

Новым толчком к совершенствованию ХИТ в начале ХХ века послужило развитие радиотехники и автомобильной промышленности. Первичные элементы и аккумуляторы являлись единственными источниками питания для средств связи, а для автомобилей потребовались стартерные аккумуляторы. Резкому улучшению характеристик ХИТ также способствовало развитие военной техники.

Появление новых разновидностей источников тока после второй мировой войны связано с работами в области авиационной и космической техники. Большое распространение ХИТ обусловлено неизменной эффективностью не зависящей от электрической мощности и условий эксплуатации. Ни один тип источников электрической энергии не обладает такой универсальностью.

Примечателен тот факт, что при одновременном включении всех ХИТ, находящихся в эксплуатации, можно получить мгновенную электрическую мощность соизмеримую с суммарной мощностью всех электростанций мира [6].

Современное производство ХИТ является самостоятельной отраслью электротехнической промышленности. Автоматизация изготовления источников тока явилась одной из причин их выпуска в огромных количествах с высокими удельными характеристиками.

Утилизация отработавших срок службы ХИТ вызвала определенные экологические проблемы. В производстве ХИТ используются ртуть, кадмий, сурьма и другие токсичные химические элементы. Сбор и переработка большого количества источников тока затруднительна. Это послужило причиной для поиска новых материалов и разработки источников тока свободных от токсичных элементов.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Источники энергии"

Книги похожие на "Источники энергии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора В Лаврус

В Лаврус - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "В Лаврус - Источники энергии"

Отзывы читателей о книге "Источники энергии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.