» » » » Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике


Авторские права

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Здесь можно купить и скачать "Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике" в формате fb2, epub, txt, doc, pdf. Жанр: Справочники, издательство Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Ответы на экзаменационные билеты по эконометрике
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Ответы на экзаменационные билеты по эконометрике"

Описание и краткое содержание "Ответы на экзаменационные билеты по эконометрике" читать бесплатно онлайн.



Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».

Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.

Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.






– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;


– случайный вектор-столбец ошибок модели регрессии размерности n x 1.

10. Нормальная линейная модель парной (однофакторной) регрессии

Общий вид нормальной (традиционной или классической) линейной модели парной (однофакторной) регрессии (Classical Normal Regression Model):

yi=β0+β1xi+εi,

где yi– результативные переменные,

xi – факторные переменные,

β0, β1 – параметры модели регрессии, подлежащие оцениванию;

εi – случайная ошибка модели регрессии.

При построении нормальной линейной модели парной регрессии учитываются пять условий:

1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии εi;

2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:

3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:

4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): Cov(εi,εj)=E(εi,εj)=0 (). Это условие выполняется в том случае, если исходные данные не являются временными рядами;

5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).

Общий вид нормальной линейной модели парной регрессии в матричной форме:

Y= X* β+ ε,

где

– случайный вектор-столбец значений результативной переменной размерности n x 1;

– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;

– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;

– случайный вектор-столбец ошибок модели регрессии размерности n x 1.

Условия построения нормальной линейной модели парной регрессии, записанные в матричной форме:

1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии βi;

2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:;

3) третье и четвёртое условия можно записать через ковариационную матрицы случайных ошибок нормальной линейной модели парной регрессии:



где G2 – дисперсия случайной ошибки модели регрессии ε;

In – единичная матрица размерности n x n.

Определение. Ковариацией называется показатель тесноты связи между переменными х и у, который рассчитывается по формуле:

где

– среднее арифметическое значение произведения факторного и результативного признаков;

Основными свойствами показателя ковариации являются:

а) ковариация переменной и константы равна нулю, т. е. cov(x,C)=0 (C=const);

б) ковариация переменной с самой собой равна дисперсии переменной, т. е. Cov(ε,ε)=G2(ε). По этой причине на диагонали ковариационной матрицы случайных ошибок нормальной линейной модели парной регрессии располагается дисперсия случайных ошибок;

4) случайная ошибка модели регрессии подчиняется нормальному закону распределения: εi~N(0, G2).

11. Критерии оценки неизвестных коэффициентов модели регрессии

В ходе регрессионного анализа была подобрана форма связи, которая наилучшим образом отражает зависимость результативной переменной у от факторной переменной х:

y=f(x).

Необходимо оценить неизвестные коэффициенты модели регрессии β0…βn. Для определения оптимальных коэффициентов модели регрессии возможно применение следующих критериев:

1) критерий суммы квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β (рассчитанных на основе функции регрессии f(x)):

Данный критерий определения оптимальных коэффициентов модели регрессии получил название метода наименьших квадратов или МНК. К основным преимуществам данного метода относятся:

а) все расчёты сводятся к механической процедуре нахождения коэффициентов;

б) доступность полученных математических выводов.

Недостаток метода наименьших квадратов заключается в излишней чувствительности оценок к резким выбросам, встречающимся в исходных данных.

Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам:

Суть минимизации функционала наименьших квадратов F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β была бы минимальной;

2) критерий суммы модулей отклонений наблюдаемых значений результативной переменной у от теоретических значений β (рассчитанных на основе функции регрессии f(x)):

Главное преимущество данного критерия заключается в устойчивости полученных оценок к резким выбросам в исходных данных, в отличие от метода наименьших квадратов.

К недостаткам данного критерия относятся:

а) сложности, возникающие в процессе вычислений;

б) зачастую большим отклонениям в исходных данных следует придавать больший вес для уравновешивания их в общей сумме наблюдений;

в) разным значениям оцениваемых коэффициентов β0…βn могут соответствовать одинаковые суммы модулей отклонений.

Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал Fпо данным параметрам:

Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений β была бы минимальной;

3) критерий, имеющий вид:

где g – это мера или вес, с которой отклонение (yi-f|xi,β|) входит в функционал F. В качестве примера веса g можно привести функцию Хубера, которая при малых значениях переменной х является квадратичной, а при больших значениях х – линейной:


где с – ограничения функции.

Данный критерий определения наилучших оценок коэффициентов модели регрессии β0…βn является попыткой объединения достоинств двух предыдущих критериев. Основное преимущество данного критерия заключается в том, что оценки неизвестных коэффициентов, найденные с его помощью, являются более устойчивыми к случайным выбросам в исходных данных, чем оценки, полученные методом наименьших квадратов.

Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам:

Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений ỹ с учётом заданных весов g была бы минимальной.

12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова

Определение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели.

Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид:

Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Ответы на экзаменационные билеты по эконометрике"

Книги похожие на "Ответы на экзаменационные билеты по эконометрике" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ангелина Яковлева

Ангелина Яковлева - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике"

Отзывы читателей о книге "Ответы на экзаменационные билеты по эконометрике", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.