» » » » Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим


Авторские права

Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим

Здесь можно скачать бесплатно "Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары, издательство Прима, год 1998. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим
Рейтинг:
Название:
Жизнеописание Л. С. Понтрягина, математика, составленное им самим
Издательство:
Прима
Год:
1998
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Жизнеописание Л. С. Понтрягина, математика, составленное им самим"

Описание и краткое содержание "Жизнеописание Л. С. Понтрягина, математика, составленное им самим" читать бесплатно онлайн.



С именем Понтрягина связана целая эпоха в развитии математики. Труды Л. С. Понтрягина оказали определяющее влияние на развитие топологии и топологической алгебры. Он заложил основы и доказал основные теоремы в оптимальном управлении и теории дифференциальных игр. Его идеи во многом предопределили развитие математики в XX веке.

Текст публикуемого ниже «Жизнеописания...» был написан, по воспоминанию вдовы Льва Семёновича — Александры Игнатьевны Понтрягиной, после тяжёлой болезни, зимой 1982–83 года, и подготовлен к изданию по рукописи, предоставленной вдовой.

Книга насквозь лична и субъективна, но в ней хорошо отражена эпоха развития науки в Советском Союзе, в частности — развитие математики. Она поражает своей правдивостью и открытостью. В этом, может быть, и есть её историческая и воспитательная ценность.






В случае если пространство A — гладкое многообразие, локализацию следующим образом можно сделать дифференциальной, т.е. перейти к дифференциалам. Прежде всего, очевидно, что всякое непрерывное отображение гладкого многообразия A на сферу Sn можно аппроксимировать гладким отображением. Таким образом, достаточно рассматривать только гладкие отображения многообразия A на сферу Sn. Предположим далее, что размерность многообразия A больше или равна размерности сферы Sn. Тогда оказывается, что точку p на сфере Sn можно выбрать таким образом, чтобы функциональный определитель отображения f в каждой точке xÎf–1(p)=Mk многообразия A, переходящей в точку p, был максимальным, т.е. равнялся n. Тогда полный прообраз точки p в пространстве A представляет собой гладкое многообразие размерности k, равной разности размерностей A и Sn. В точке p на сфере Sn выберем n ортогональных между собой единичных векторов u1, ..., un. Обозначим через vi(x) вектор пространства A, ортогональный к многообразию Mk в точке x и переходящий в вектор ui.

Таким образом, в каждой точке x многообразия Mk построены n линейно независимых векторов v1(x), ..., vn(x). Ортонормируя систему векторов v1(x), ..., vn(x), мы получим ортонормированную систему векторов w1(x), ..., wn(x) в каждой точке х многообразия Mk. Многообразие Mk, в каждой точке которого задана ортонормальная система векторов, ортогональных к нему, я назвал оснащённым многообразием. В том случае, когда многообразие A представляет собой сферу Sn+k, оснащённое многообразие Mk однозначно определяет гомотопический класс отображений, из которого оно возникло при помощи точки p. От сферы Sn+k легко перейти к евклидову пространству En+k. Таким образом, проблему классификации отображений сферы Sn+k на сферу S n я свёл к проблеме изучения оснащённых многообразий Mk в евклидовом пространстве En+k. Нужно было посмотреть, что делается с оснащённым многообразием Mk, когда отображение f гладко деформируется. Это и было мною сделано.

Таким образом, я пришёл к проблеме изучения гладких многообразий Mk, расположенных в евклидовом пространстве En+k(заменяю здесь n на l) и для их изучения ввёл характеристические циклы многообразия Mk, гомологические классы. Дам здесь их определение.

В евклидовом пространстве Ek+1 проведём через некоторую точку O все k-мерные ориентированные плоскости размерности k и обозначим через H(k, l) многообразие, составленное из этих плоскостей. В каждой точке x многообразия Mk проведём касательную к нему плоскость Тх. Обозначим через T(x) плоскость из многообразия H(k, l), параллельную плоскости Tx. Таким образом, возникает отображение T многообразия Mk в многообразие H(k, l). Это отображение я назвал тангенциальным отображением. Для многообразия H(k, l) я нашёл все циклы с точностью до гомологии. Если Z — некоторый цикл из H(k, l), то он высекает на многообразии T(Mk) некоторый цикл Y, прообраз которого Q в многообразии Мk и называется характеристическим циклом. Очень легко доказывается, что характеристические циклы не зависят от числа l при достаточно большом l и являются инвариантами гладкого многообразия Mk. Здесь имеются, конечно, в виду циклы с точностью до гомологий, т.е. классы гомологий, поэтому в дальнейшем они стали называться классами Понтрягина, а не циклами. В дальнейшем характеристические классы стали предметом изучения многих математиков и играли большую роль в топологии. Первая же важная проблема, которая связана с ними, заключается в следующем: легко доказывается, что характеристические классы являются инвариантами гладкого многообразия Mk; возникает вопрос, не являются ли они инвариантами самого топологического многообразия Mk? Эту задачу я пытался решить, но не сумел.

Много лет спустя С. П. Новиков доказал, что если рассматривать характеристические классы над полем рациональных чисел, то они являются инвариантами топологического многообразия Mk, т.е. не зависят от введённой на нём гладкости. Характеристические классы конечного порядка, напротив, не являются инвариантами топологического многообразия Mk. Это было установлено и сыграло также существенную роль для решения некоторых важных задач. В частности, это обстоятельство было использовано для доказательства того, что на топологической сфере можно ввести различные гладкости, не эквивалентные между собой.

Связь между гомотопической классификацией отображений сферы Sn+k на сферу Sn и теорией гладких многообразий была установлена мною отнюдь не в 1936 году, а гораздо позже, когда я старался упростить доказательство, которое для k=1, 2 первоначально было чудовищно сложно, а также старался решить задачу классификации отображений для k≥3. Мне кажется, что характеристические циклы были построены мною ещё до войны, но первая публикация была дана только в 1942 году 14. Существенно упростить решение задачи для k=1 и k=2 мне удалось. Решить задачу для k≥3 не удалось, несмотря на все мои усилия.

Попытки решить эту задачу продолжались несколько лет. Точно так же несколько лет я занимался гладкими многообразиями, в частности оснащёнными, а также характеристическими классами.

Эта деятельность была закончена мною в начале 50-х годов и завершилась чтением курса лекций на эту тему. Затем была опубликована монография «Гладкие многообразия и их применения в теории гомотопий» в 1955 г. в «Трудах Математического института»[35].

Несмотря на то, что я не сумел решить задачу для k≥3, результаты, полученные мною по теории гладких многообразий, оказались существенными и вошли в топологию гладких многообразий. Независимо от меня задачей классификации отображений Sn+k на Sn занимался Лере, но совершенно на другом пути. Его первоначальные публикации, подводящие к решению этой проблемы, были крайне формалистичны, и совершенно не видно было, к чему они ведут. Так что я только попытался их изучить, а потом бросил.

В конечном счёте Лере на своём пути решил задачу классификации отображений сферы Sn+kна сферу Sn при произвольном k. Этим самым моя многолетняя работа в этой области была мною закрыта. Это послужило одной из причин, по которым я полностью бросил топологию и занялся прикладными проблемами. Впрочем, для этого были и более существенные причины. Об этом, однако, я расскажу позже.

* * *

Математик не скажет: «Я работал», он скажет: «Я занимался». Это значит, он занимался математикой. Может быть, читал математическую работу, может быть, старался доказать новую теорему, может быть писал собственную работу, излагая уже полученные результаты. Обо всём этом говорится: «занимался».

Иногда мне задают вопрос: в чём состоит кухня математического творчества, или иначе: в чём заключается кухня математических занятий, т.е. как получаются новые математические результаты. Полноценного ответа на этот вопрос, я думаю, дать нельзя. Один из героев А. С. Пушкина («Египетские ночи») говорит: «Всякий талант неизъясним». Подражая Пушкину, можно было бы сказать: процесс математического творчества неизъясним.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Жизнеописание Л. С. Понтрягина, математика, составленное им самим"

Книги похожие на "Жизнеописание Л. С. Понтрягина, математика, составленное им самим" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лев Понтрягин

Лев Понтрягин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим"

Отзывы читателей о книге "Жизнеописание Л. С. Понтрягина, математика, составленное им самим", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.