» » » » А. Красько - Схемотехника аналоговых электронных устройств


Авторские права

А. Красько - Схемотехника аналоговых электронных устройств

Здесь можно скачать бесплатно "А. Красько - Схемотехника аналоговых электронных устройств" в формате fb2, epub, txt, doc, pdf. Жанр: Все книги в жанре Компьютерное "железо", издательство Томский государственный университет систем управления и радиоэлектроники, год 2005. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Схемотехника аналоговых электронных устройств
Автор:
Издательство:
Томский государственный университет систем управления и радиоэлектроники
Год:
2005
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Схемотехника аналоговых электронных устройств"

Описание и краткое содержание "Схемотехника аналоговых электронных устройств" читать бесплатно онлайн.



В учебном пособии рассмотрены теоретические основы и принципы действия аналоговых устройств на биполярных и полевых транзисторах. Анализируются основные схемы, используемые в аналоговых трактах типовой радиоэлектронной аппаратуры, приводятся расчетные формулы, позволяющие определить элементы принципиальных схем этих устройств по требуемому виду частотных, фазовых и переходных характеристик. Излагаются основы построения различных функциональных устройств на основе операционных усилителей. Рассмотрены так же ряд специальных вопросов с которыми приходится сталкиваться разработчикам аналоговых электронных устройств – оценка нелинейных искажений, анализ устойчивости, чувствительности и др.

Пособие предназначено для студентов, обучающихся по направлениям подготовки 552500, 654200 – «Радиотехника», 654100 – «Электроника и микроэлектроника», и может быть полезно для преподавателей и научных работников.






 Если усилитель предназначен для работы в согласованном тракте передачи (т.е. Rвх==R0, где R0 — характеристическое сопротивление тракта передачи), то ступенчатый регулятор целесообразно выполнить на основе симметричных аттенюаторов Т- и П-типов [11] (рисунок 7.4а,б).

Рисунок 7.4. Т- и П-образные симметричные аттенюаторы


Для П-образной схемы аттенюатора номиналы элементов определяются из следующих соотношений:

Номиналы Т-образной схемы аттенюатора определяются следующим образом:

Практическая схема ступенчатого регулятора на 18 дБ для 75-омного тракта передачи, работающего в диапазоне рабочих частот (0…150)МГц, приведена на рис. 7.5.

Рисунок 7.5. Ступенчатый аттенюатор


Схема построена на основе одинаковых П-образных звеньев с затуханием в шесть децибел. В зависимости от положения переключателей SA1÷SA3 данный регулятор обеспечивает затухание от 0 до 18 дБ с шагом 6 дБ.

Подобный регулятор обычно располагают между источником сигнала и входом усилителя. В связи с тем, что входное и выходное сопротивления данного регулятора не зависят от уровня вносимого затухания, величина частотных и временных искажений, создаваемых входной цепью, также остается постоянной при разных уровнях затухания.

В усилительных устройствах, применяемых в современной аудио- и видеоаппаратуре, широко применяются электронные регуляторы [12], позволяющие вручную или автоматически изменять коэффициент передачи тракта по закону, определяемому функцией управления.

В электронных регуляторах потенциометрического типа (рисунок 7.6) в качестве управляемых сопротивлений используются диоды, фотосопротивления, БТ и ПТ.

Рисунок 7.6. Электронные аттенюаторы потенциометрического типа


В диодном потенциометрическом регуляторе (рисунок 7.6а) в качестве управляемых сопротивлений используются диоды VD1 и VD2, управляемые прямым током. Диапазон регулирования диодных аттенюаторов достигает 40дБ при токах регулирования (0…2.2)мА. Диодным регуляторам свойственны существенные недостатки:

◆ отсутствие развязки цепей управления и сигнала;

◆ значительная мощность, потребляемая цепью управления;

◆ существенные нелинейные искажения сигнала при большом затухании.

Подобными свойствами обладает и аттенюатор на БТ (рисунок 7.6б), т.к. переходы транзистора выполняют функции диодов.

 Электронный регулятор на основе оптрона (рисунок 7.6в) обеспечивает практически идеальную развязку цепей управления и сигнала, но требует затраты значительной мощности в цепи управления светодиодом.

По совокупности свойств наилучшими показателями обладает регулятор на основе ПТ (рисунок 7.6г), используемого в качестве управляемого сопротивления. Цепь управления практически не потребляет мощности ввиду практического отсутствия тока затвора у ПТ. Поскольку в цепи сигнала нет p-n переходов, а имеется лишь омическое сопротивление, то нелинейные искажения, вносимые подобным аттенюатором, минимальны. В отличие от ранее рассмотренных схем регуляторов, данная схема позволяет работать без постоянной составляющей в выходной цепи.

Регулировку коэффициента передачи усилительных каскадов можно осуществить путем изменения режима работы усилительных элементов, поскольку в этом случае изменяются их эквивалентные параметры, в частности, крутизна S0 (см. подраздел 2.4). На рисунке 7.7 показано, как осуществляется такая регулировка в каскаде на БТ (рисунок 7.7а), каскаде на ПТ (рисунок 7.7б) и в дифференциальном усилителе (рисунок 7.7в). Регулируемый каскад на основе ДУ позволяет достичь глубины регулировки порядка (60…70)дБ при повышенной термостабильности .

Рисунок 7.7. Регуляторы с изменением режима работы элементов


Перспективным является способ регулировки на основе ИМС перемножителя (рисунок 7.7г). Интегральные перемножители реализуют функцию

UZ = KUXUY,

где K — масштабный коэффициент.

Регуляторы на основе перемножителей способны осуществлять регулировку напряжения с амплитудой порядка десятков вольт и точностью порядка 1% [12], однако сама ИМС перемножителя имеет достаточно сложное схемное решение.

Возможно включение электронного регулятора в цепь ООС. Примером подобного решения может служить регулятор на основе ОУ, в цепь ООС которого включен ПТ, используемый в качестве управляемого сопротивления (рисунок 7.8).

Рисунок 7.8. Регулятор на основе ОУ


Напряжение управления Eупр в рассмотренных электронных регуляторах можно менять в необходимых пределах с помощью переменного резистора, который может быть установлен в удобном для эксплуатации месте, например, на передней панели корпуса прибора. Из-за развязки цепи управления и цепи сигнала влияние соединительных проводников будет минимальным.

Напряжение управления Eупр может быть получено с выхода детектора, если используется автоматическая регулировка усиления (АРУ). Схемы усилителей с АРУ и авторегуляторами уровня рассмотрены в [12].

7.2. Усилители диапазона СВЧ[1]

В настоящее время разработаны и успешно эксплуатируются различные системы передачи информации СВЧ диапазона: радиорелейные линии, системы космической связи "Орбита", "Экран", "Москва" и т.п., системы непосредственного телевещания диапазона 12ГГц, системы космической навигации, службы погоды и т.д.

Важными компонентами этих систем являются широкополосные усилители (ШУ), работающие в качестве предварительных усилителей, усилителей промежуточных частот (ПЧ), видеоусилителей и т.д.

Как правило, подобные усилители работают в согласованном тракте передачи с характеристическим сопротивлением 50 и 75 Ом. Тракт передачи может быть реализован в виде волновода, коаксиального кабеля, микрополосковой линии и т.п.

В качестве активных элементов в ШУ наиболее часто используют биполярные СВЧ транзисторы и полевые транзисторы с барьером Шоттки. БТ используют в диапазоне частот до 2 ГГц, ПТ с барьером Шоттки — до 100ГГц.

Транзисторные усилители СВЧ могут выполняться по схемам каскадных усилителей, усилителей распределенного усиления, каскадно-распределенных и балансных.

В каскадных усилителях наиболее часто используют каскады с ОЭ (ОИ), реже с ОБ (ОЗ) из-за проблемы согласования с характеристическим сопротивлением тракта в широком частотном диапазоне. Поскольку коэффициент усиления транзистора с ростом частоты уменьшается, то расчет ШУ и согласование нагрузок проводят для верхней частоты рабочего диапазона. Избыточное усиление в области НЧ и СЧ устраняют так называемыми выравнивающими цепями, которые могут быть реактивными и диссипативными (с потерями).

Диссипативные выравнивающие цепи рассчитывают так, чтобы обеспечить требуемый KP, хорошее согласование с характеристическим сопротивлением тракта передачи (малый КСВН) и устойчивость в диапазоне рабочих частот. В дециметровом диапазоне рабочих частот выравнивающие цепи могут быть реализованы в виде цепей с сосредоточенными параметрами, на более высокочастотном — с распределенными параметрами. Примеры простейших диссипативных выравнивающих цепей приведены на рисунке 7.9, причем более сложный вариант (рисунок 7.9б) — для сверхширокополосных усилителей (/>2).

Рисунок 7.9. Простейшие диссипативные выравнивающие цепи


Задача согласования и выравнивания коэффициента передачи в диапазоне рабочих частот облегчается при использовании ООС. При резистивной ООС (рисунок 7.10а) достигается широкополосное согласование в каскаде на ПТ. В сверхширокополосных усилителях используют комбинированные резистивно-индуктивные цепи ООС (рисунок 7.10б), с помощью которых осуществляется эффективное выравнивание АЧХ.

Рисунок 7.10. ООС в СВЧ ШУ


Усилители с распределенным усилением (УРУ) (рисунок 7.11) позволяют достичь большой мощности выходного сигнала на низкоомной нагрузке за счет сложения токов транзисторов в выходной линии. Однако УРУ отличает сложная схемная реализация и низкий КПД.

Рисунок 7.11. УРУ


Каскадно-распределенные усилители (рисунок 7.12), сочетая достоинства каскадных и УРУ, позволяют получить хорошие мощностные характеристики в широкой полосе рабочих частот при относительно простой схемной реализации. Выбором Rэ1 и Rэ2 добиваются одинакового усиления по току транзисторов VT1 и VT2. Поскольку выходные токи транзисторов складываются в нагрузке, то возможно использование данного каскада на частотах, близких к fT используемых транзисторов.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Схемотехника аналоговых электронных устройств"

Книги похожие на "Схемотехника аналоговых электронных устройств" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора А. Красько

А. Красько - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "А. Красько - Схемотехника аналоговых электронных устройств"

Отзывы читателей о книге "Схемотехника аналоговых электронных устройств", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.