» » » Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ


Авторские права

Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ

Здесь можно купить и скачать "Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство Литагент «ДМК»233a80b4-1212-102e-b479-a360f6b39df7, год 2006. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
Рейтинг:
Название:
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
Издательство:
неизвестно
Год:
2006
ISBN:
5-94074-304-8
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ"

Описание и краткое содержание "Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ" читать бесплатно онлайн.



Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.

Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.






Реализация и использование класса Uncopyable сопряжена с некоторыми тонкостями. Например, наследование от Uncopyable не должно быть открытым (см. правила 32 и 39), а деструктор Uncopyable не должен быть виртуальным (см. правило 7). Поскольку Uncopyable не имеет данных-членов, то компилятор может прибегнуть к оптимизации пустых базовых классов, описанной в правиле 39, но коль скоро этот класс базовый, то возможно возникновение множественного наследования (см. правило 40). А множественное наследование в некоторых случаях не дает возможности провести оптимизацию пустых базовых классов (см. правило 39). Вообще говоря, вы можете игнорировать эти тонкости и просто использовать Uncopyable, как показано выше. Можете также воспользоваться версией из билиотеки Boost (см. правило 55). В ней этот класс называется noncopyable. Это хороший класс, но мне просто показалось, что его название немного, скажем так, неестественное.

Что следует помнить

• Чтобы отключить функциональность, автоматически предоставляемую компилятором, объявите соответствующую функцию-член закрытой и не включайте ее реализацию. Наследование базовому классу типа Uncopyable – один из способов сделать это.

Правило 7: Объявляйте деструкторы виртуальными в полиморфном базовом классе

Существует много способов отслеживать время, поэтому имеет смысл создать базовый класс TimeKeeper и производные от него классы, которые реализуют разные подходы к хронометражу:


class TimeKeeper {

public:

TimeKeeper();

~TimeKeeper();

...

};

class AtomicClock: public TimeKeeper {…};

class WaterClock: public TimeKeeper {….};

class WristWatch: public TimeKeeper {…};


Многие клиенты захотят иметь доступ к данным о времени, не заботясь о деталях того, как они получаются, поэтому мы можем воспользоваться фабричной функцией (factory function), которая возвращает указатель на базовый класс созданного ей объекта производного класса:


TimeKeeper *getTimeKeeper(); // возвращает указатель на динамически

// выделенный объект класса,

// производного от TimeKeeper


В соответствии с соглашением о фабричных функциях объекты, возвращаемые getTimeKeeper, выделяются из кучи, поэтому для того, чтобы избежать утечек памяти и других ресурсов, важно, чтобы каждый полученный объект был рано или поздно уничтожен:


TomeKeeper *ptk = getTimeKeeper(); // получить динамически выделенный

// объект из иерархии TimeKeeper

... // использовать его

delete ptk; // уничтожить, чтобы избежать утечки

// ресурсов


Как объясняется в правиле 13, полагаться на то, что объект уничтожит клиент, чревато ошибками, а в правиле 18 говорится, как можно модифицировать фабричную функцию для предотвращения наиболее частых ошибок в клиентской программе. Здесь же мы обсудим более серьезный недостаток приведенного выше кода: даже если клиент все делает правильно, мы не можем узнать, как будет вести себя программа.

Проблема в том, что getTimeKeeper возвращает указатель на объект производного класса (например, AtomicClock), а удалять этот объект нужно через указатель на базовый класс (то есть на TimeKeeper), при этом в базовом классе (TimeKeeper) объявлен невиртуальный деструктор. Это прямой путь к неприятностям, потому что в спецификации C++ постулируется, что когда объект производного класса уничтожается через указатель на базовый класс с невиртуальным деструктором, то результат не определен. Во время исполнения это обычно приводит к тому, что часть объекта, принадлежащая производному классу, никогда не будет уничтожена. Если getTimeKeeper() возвращает указатель на объект класс AtomicClock, то часть объекта, принадлежащая AtomicClock (то есть данные-члены, объявленные в этом классе), вероятно, не будут уничтожены, так как не будет вызван деструктор AtomicClock. Те же члены, что относятся к базовому классу (то есть TimeKeeper), будут уничтожены, что приведет к появлению так называемых «частично разрушенных» объектов. Это верный путь к утечке ресурсов, повреждению структур данных и проведению изрядного времени в обществе отладчика.

Решить эту проблему легко: нужно объявить в базовом классе виртуальный деструктор. Тогда при удалении объектов производных классов будет происходить именно то, что нужно. Объект будет разрушен целиком, включая все его части:


class TimeKeeper {

public:

TimeKeeper();

virtual ~TimeKeeper();

...

};

TimeKeeper *ptk = get TimeKeeper();

...

delete ptk; // теперь работает правильно


Обычно базовые классы вроде TimeKeeper содержат и другие виртуальные функции, кроме деструктора, поскольку назначение виртуальных функций – обеспечить возможность настройки производных классов (см. правило 34). Например, в классе TimeKeeper может быть определена виртуальная функция getCurrentTime, реализованная по-разному в разных производных классах. Любой класс с виртуальными функциями почти наверняка должен иметь виртуальный деструктор.

Если же класс не имеет виртуальных функций, это часто означает, что он не предназначен быть базовым. А в таком классе определять виртуальный деструктор не стоит. Рассмотрим класс, представляющий точку на плоскости:


class Point { // точка на плоскости

public:

Point(int xCoord, int yCoord);

~Point();

private:

int x,y;

};


Если int занимает 32 бита, то объект Point обычно может поместиться в 64-битовый регистр. Более того, такой объект Point может быть передан как 64-битовое число функциям, написанным на других языках (таких как C или FORTRAN). Если же деструктор Point сделать виртуальным, то ситуация изменится.

Для реализации виртуальных функций необходимо, чтобы в объекте хранилась информация, которая во время исполнения позволяет определить, какая виртуальная функция должна быть вызвана. Эта информация обычно представлена указателем на таблицу виртуальных функций vptr (virtual table pointer). Сама таблица – это массив указателей на функции, называемый vtbl (virtual table). С каждым классом, в котором определены виртуальные функции, ассоциирована таблица vtbl. Когда для некоторого объекта вызывается виртуальная функция, то с помощью указателя vptr в таблице vtbl ищется та реальная функция, которую нужно вызвать.

Детали реализации виртуальных функций не важны. Важно то, что если класс Point содержит виртуальную функцию, то объект этого типа увеличивается в размере. В 32-битовой архитектуре его размер возрастает с 64 бит (два целых int) до 96 бит (два int плюс vptr); в 64-битовой архитектуре он может вырасти с 64 до 128 бит, потому что указатели в этой архитектуре имеют размер 64 бита. Таким образом, добавление vptr к объекту Point увеличивает его размер на величину от 50 до 100 %! После этого объект Point уже не может поместиться в 64-битный регистр. Более того, объекты этого типа в C++ перестают выглядеть так, как аналогичные структуры, объявленные на других языках, например на C, потому что в других языках нет понятия vptr. В результате становится невозможно передавать объекты типа Point написанным на других языках программам, если только вы не учтете наличия vptr. А это уже деталь реализации, и, следовательно, такой код не будет переносимым.

Практический вывод из всего вышесказанного состоит в том, что необоснованно объявлять все деструкторы виртуальными так же неверно, как не объявлять их виртуальными никогда. Можно высказать этот совет и в таком виде: деструкторы следует объявлять виртуальными тогда, когда в классе есть хотя бы одна виртуальная функция.

Однако невиртуальные деструкторы могут стать причиной неприятностей даже при полном отсутствии в классе виртуальных функций. Например, в стандартном классе string нет виртуальных функций, но программисты временами все же используют его как базовый класс:


class SpecialString: public std::string { // плохо! std::string содержит

... // невиртуальный деструктор

};


На первый взгляд такой код может показаться безвредным, но если где-то в приложении вы преобразуете указатель на SpecialString в указатель на string, а затем выполните для этого указателя delete, то немедленно попадете в область неопределенного поведения:


SpecialString *pss = new SpecialString(“Надвигающаяся опасность”);

std::string *ps;

...

ps = pss; // SpecialString*=>std::string*

...

delete ps; // неопределенность! На практике ресурсы, выделенные

// объекту SpecialString, не будут освобождены, потому

// что деструктор SpecialString не вызывается


То же относится к любому классу, в котором нет виртуального деструктора, в частности ко всем типам STL-контейнеров (например, vector, list, set, tr1::unordered_map [см. правило 54] и т. д.). Если у вас когда-нибудь возникнет соблазн унаследовать стандартному контейнеру или любому другому классу с невиртуальным деструктором, воздержитесь! (К сожалению, в C++ не предусмотрено никакого механизма предотвращения наследования, как, скажем, final в языке Java, или sealed в C#).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ"

Книги похожие на "Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Скотт Майерс

Скотт Майерс - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ"

Отзывы читателей о книге "Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.