В Степин - Новая философская энциклопедия. Том первый
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Новая философская энциклопедия. Том первый"
Описание и краткое содержание "Новая философская энциклопедия. Том первый" читать бесплатно онлайн.
Введите сюда краткую аннотацию
247
БЕСКОНЕЧНОЕ не может существовать актуальная бесконечность. Даже точки континуума существуют в нем только потенциально. «Легализация» актуальной бесконечности в тварном мире исторически была связана с обсуждением природы человеческой души, сотворенной по образу Божьему. В какой степени божественные совершенства отразились в человеческой душе? Дуне Скот настаивал, что человеческая душа по своей природе превосходит ту конечность, которая характерна для всего тварного: ведь человеческая душа способна воспринимать божественную благодать, т.е. самого бесконечного Бога. Значит, ей дарована адекватная предмету восприятия бесконечная воспринимающая способность. Еще дальше идут мистики. Экхарт прямо учит, что в глубине человеческой души имеется нетварная божественная «искорка». Как соприродная Богу, эта «искорка», естественно, актуально бесконечна. Подобное понимание образа Божьего прокладывало дорогу пантеизму и не раз осуждалось Католической церковью. Кардинал Николай Кузанский развивает учение о совпадении абсолютного максимума и абсолютного минимума- В рамках этого учения бесконечное, абсолютный максимум становится «адекватной мерой» всех конечных вещей. Понимание соотношения бесконечного и конечного принципиально меняется по отношению к античному толкованию: если для последнего все конечное было актуальным, а бесконечное выступало лишь как потенциальное, то для Кузанца, наоборот, любая конечная вещь выступает как потенциальное ограничение актуально бесконечной божественной возможности — бытия (possest). Аналогично и в рамках пантеизма Спинозы оказывается, что omnis determinatio est negatio (каждое определение есть отрицание): не через предел, не через ограничение бесформенной материи получают вещи свое бытие, а именно от подлежащей бесконечной божественной субстанции, внутри которой самоопределение выступает как частичная негация. Божественная субстанция-природа имеет бесконечные атрибуты, в т. ч. протяженность и длительность. Время же, число и мера являются только конечными, или потенциально бесконечными средствами воображения. В анализе проблемы бесконечного Спиноза предвосхищает подходы к бесконечному у создателя теории множеств Г. Кантора. Спекулятивная теология Николая Кузанского служит также основанием представлений и о бесконечности Вселенной. Бог является, «основанием» мира: то, что содержится в Боге «в свернутом виде», мир «разворачивает» в пространстве и времени. Пространственная протяженность мира и время его существования не могут быть конечными, потому что они «выражают» бесконечность Бога. Хотя мир не является бесконечным в том же смысле, как и Бог, — мир не есть все, что может быть, — тем не менее его привативная бесконечность (не infinitum, a Indeterminatum) включает в себя бесконечность пространства и времени. Пересмотр Коперником геоцентрической системы и полемический талант Бруно помогают этому тезису Кузанца стать в высшей степени популярным к 18 в. Декарт также поддерживал идею беспредельности мира: хотя и «недопустимо рассуждать о бесконечном, но следует просто считать беспредельными веши, у которых мы не усматриваем никаких границ, — такова протяженность мира, делимость частей материи, число звезд и т. д.» (Первоначала философии, ч. I). Кроме того, по Декарту, бесконечна человеческая воля, являющаяся существенным признаком образа Божьего в человеческом существе. Именно несоответствие конечности человеческого разума и бесконечности воли служит, по Декарту, причиной ложных суждений. На фоне других философов 17 в. Лейбниц выступает как наиболее убежденный защитник существования актуальной бесконечности. Тема бесконечности обсуждалась Лейбницем в разных аспектах. Актуально бесконечно прежде всего количество субстанций — монад — в универсуме. Каждая часть материи представляет собой также актуально бесконечную совокупность монад. Устойчивость агрегатов этих монад связана с особыми принципами их подчинения и с законом предустановленной гармонии. «Всякую часть материи можно представить наподобие сада, полного растений, и пруда, полного рыб. Но каждая ветвь растения, каждый член животного, каждая капля его соков есть опять такой же сад или такой же пруд» (Монадология, 67). В свою очередь каждая монада представляет в своих восприятиях весь бесконечный универсум, бесконечный как в пространстве, так и во времени. Это понимание ведет Лейбница в психологии к формулировке концепции бесконечно-малых («подсознательных») восприятий. В математике же это приводит к особому пониманию структуры пространственного континуума и, наконец, к созданию дифференциального и интегрального исчислений. Лейбницевские идеи в отношении актуальной бесконечности остаются в высшей степени действенными и по существу непревзойденными все последующие три столетия. Несмотря на то что молодой Кант еще всецело разделял лей- бницевскую точку зрения в отношении актуальной бесконечности, позже его взгляды резко меняются. В «Критике чистого разума» в силу кантовской философии математики оказываются невозможны ни бесконечное число, ни бесконечная величина. Мир же в отношении своих пространственных и временных характеристик выступает ни как конечный, ни как бесконечный, а как indefmitum — неопределенный. У Фихте, по-своему разрабатывавшего идею Экхарта о причастности человеческого духа к божественной сущности, вся природа выступает уже как бледное отражение истинной бесконечности, заключенной в абсолютном «Я». Фихте учил о становлении нового мира, точнее, целой последовательности миров, но не через катастрофический онтологический разрыв христианской теологии («Второе пришествие»), а в результате органически развивающегося процесса деятельности абсолютного «Я». В этой от века сушей потенциально бесконечной деятельности божественная природа абсолютного «Я» все яснее приходит к осознанию своей актуальной бесконечности. У Гегеля конечное и бесконечное являются лишь двумя терминами в его диалектической триаде. Простое отрицание конечного дает лишь «дурную бесконечность»: никогда не завершающийся переход от одного конечного к другому и представляет собой лишь «долженствование бесконечного». Истинная бесконечность должна диалектически снять оба соотнесенных момента, быть некоторым становлением, которое одновременно есть и самораскрытие. Истинно бесконечен у Гегеля, собственно, Абсолютный дух, который одновременно и актуально бесконечен, и осуществляет свое развитие через мир конечных духов. В 1851 вышла работа Б. Больцано «Парадоксы бесконечного», в которой делается попытка опровергнуть традиционные возражения против актуально бесконечного. В ней
248
БЕСКОНЕЧНОЕ обсуждались понятия, ставшие в дальнейшем главными и для Кантора: различение потенциальной и актуальной бесконечности, трансфинитного и абсолютного и ряд других. В 20 в. философские дискуссии вокруг проблем бесконечности соотносятся с теорией множеств и проблемой оснований математики. Таковы, напр., феноменологический подход к проблемам теории множеств у О. Бек- кера (Becker О. Mathematische Existenz. Halle, 1927); интерпретация проблем теории множеств как выражения классического конфликта между аристотелевским концептуализмом и платонистской традицией в математике у Л. Брюнсвика (Brunschvicq L. Les etapes de la philosophie mathematique. P., 1922); рассмотрение канторовской иерархии бесконечного на фоне концепции всеединства у Б. П. Вышеславцева (Вышеславцев Б. П. Этика преображенного эроса. М., 1994).
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ ИЛОТИКЕ. Использование актуальной бесконечности в математике настойчиво стремятся легализовать со 2-й пол. 19 в. В этом процессе большую роль сыграли труды Б. Больцано, К. Вейерштрасса, Р. Дедекинда и в особенности Г. Кантора. В их работах было систематизировано употребление понятия бесконечности в европейской традиции, выделены его основные аспекты и была предложена (Кантором) беспрецедентно дерзкая конструкция «шкалы бесконечностей», ведущая от самых простых типов бесконечности до бесконечности в Боге. Несмотря на то что конструкции Кантора, ставшие основанием всей современной математики, привели к перманентному кризису этого основания, продолжавшемуся весь 20 в., теория множеств представляется зрелым плодом взаимодействия центральных философских тем европейской культурной традиции. Трагические коллизии мысли, связанные с историей т. н. парадоксов теории множеств, представляют собой своеобразное раскрытие и саморазоблачение тех титанических импульсов, которые сыграли существенную роль в становлении новоевропейской науки и цивилизации в 15-17 вв.
ТЕОРИЯ МНОЖЕСТВКАНТОРА. Кантор развил определенную технику оперирования с актуально бесконечными множествами и построил определенный аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным — разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимнооднозначное соответствие с элементами подмножества В1 множества В, а элементы множества В нельзя поставить во взаимнооднозначное соответствие с элементами А, то тогда говорят, что мощность множества В больше мощности множества А. Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства. Бесконечное множество оказывается эквивалентным своей части, напр. так, как это происходит в т. н. «парадоксе Галилея»: 1,2,3,4, ...,п, ... i i i i I 2, 4,6,8, ...,2п,... Эти парадоксы были известны давно, и именно они, в частности, служили препятствием для рассмотрения актуально бесконечных множеств. То, что здесь просто сказывается специфика актуально бесконечного, объяснял в «Парадоксах бесконечного» Больцано. Дедекинд считал это свойство актуально бесконечных множеств характеристическим. Кантор развивает арифметику кардинальных чисел. Суммой двух кардинальных чисел является мощность объединения соответствующих им множеств, произведением — мощность т. н. множества-произведения двух данных множеств и т. д. Важнейшим оказывается переход от данного множества к множеству-степени, т. е., по определению, к множеству всех подмножеств исходного множества. Кантор доказывает основополагающую для его теории теорему: мощность множества-степени больше мощности исходного множества. Если мощность исходного множества записать через я, то в соответствии с арифметикой кардинальных чисел мощность множества-степени будет 2а , и мы имеем, следовательно, 2а > а. Значит, переходя от некоторого бесконечного множества, напр, от множества всех натуральных чисел, имеющего мощность К0 (обозначение Кантора), к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и т. д., мы будем получать ряд множеств все более возрастающей мощности. Есть ли какой-то предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия. Оперировать с бесконечными множествами, лишенными всякой дополнительной структуры, вообще говоря, невозможно. Поэтому Кантор ввел в рассмотрение упорядоченные множества, т.е. множества, для любых двух элементов которых определено отношение «больше» < (или «меньше» <). Это отношение должно быть транзитивным: из а<Ь и Ь<с следует: а<с. Собственно, наиболее продуктивным для теории множеств является еще более узкий класс множеств: вполне упорядоченные множества. Так называются упорядоченные множества, у которых каждое подмножество имеет наименьший элемент. Вполне упорядоченные множества легко сравнивать между собой: они отображаются одно на часть другого с сохранением порядка. Символы вполне упорядоченных множеств, или ординальные (порядковые) числа, также образуют вполне упорядоченное множество, и для них также можно определить арифметические действия: сложение (вычитание), умножение, возведение в степень. Ординальные числа играют для бесконечных множеств роль порядковых чисел, кардинальные — роль количественных. Множество (бесконечное) определенной мощности можно вполне упорядочить бесконечным числом способов, каждому из которых будет соответствовать свое ординальное число. Тем самым каждому кардиналу (Кантор ввел для обозначения кардиналов «алефы» — первую букву еврейского алфавита с индексами) К я будет соответствовать бесконечно много ординалов:
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Новая философская энциклопедия. Том первый"
Книги похожие на "Новая философская энциклопедия. Том первый" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "В Степин - Новая философская энциклопедия. Том первый"
Отзывы читателей о книге "Новая философская энциклопедия. Том первый", комментарии и мнения людей о произведении.











