» » » » Джеймс Глейк - Хаос. Создание новой науки

Джеймс Глейк - Хаос. Создание новой науки

Здесь можно скачать бесплатно "Джеймс Глейк - Хаос. Создание новой науки" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Амфора, год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джеймс Глейк - Хаос. Создание новой науки
Рейтинг:

Название:
Хаос. Создание новой науки
Издательство:
Амфора
Год:
2001
ISBN:
5-94278-139-7
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Хаос. Создание новой науки"

Описание и краткое содержание "Хаос. Создание новой науки" читать бесплатно онлайн.



В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.

Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…

История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.






Открытие Лоренца было случайным, звено в цепи неожиданных прозрений, восходящей еще к Архимеду с его ванной. Но Лоренц не принадлежал к числу тех, кто торопится кричать «Эврика!». Руководимый инстинктивной прозорливостью, он приготовился идти дальше тем же путем и изучать последствия своего открытия, выясняя его роль в образовании потоков во всех видах жидкости.

Споткнись Лоренц на эффекте бабочки, этом символе торжества случая над предопределенностью, в его распоряжении не оказалось бы ничего, кроме плохих новостей. Но Лоренц в своей модели погоды видел нечто большее, чем просто встроенную в нее хаотичность, — там наблюдалась изящная геометрическая структура, некий порядок, выдающий себя за случайность. Лоренц, будучи математиком по призванию и метеорологом по профессии, начал в конце концов вести двойную жизнь. Кроме работ по метеорологии из-под его пера выходили статьи, где несколько вступительных строк о теории атмосферных процессов растворялись в математическом тексте.

Он уделял все больше и больше внимания математике систем, которые никогда не находились в устойчивом состоянии, почти повторяя друг друга, но не достигая полной идентичности. Известно, что погода как раз и является такой апериодичной системой. Мир полон подобных систем, и не нужно далеко ходить за примерами: численность популяций животных растет и падает почти регулярно, эпидемии начинаются и продолжаются, вопреки людским надеждам, тоже в определенном порядке. И если бы погода когда-нибудь повторилась в точности, продемонстрировав полностью идентичное прежнему облако или дождь, как две капли воды похожий на недавно прошедший, тогда, вероятно, она стала бы всегда воспроизводиться и проблема прогнозирования потеряла бы свою актуальность.

Лоренц предвидел, что должна существовать связь между неповторяемостью атмосферных явлений и неспособностью метеорологов предсказать их, иными словами, связь между апериодичностью и непредсказуемостью. Найти простые выражения для апериодичности было делом нелегким, однако Лоренц, преодолев множество мелких препятствий, в частности зацикливание программы, все же достиг успеха. Это произошло, когда он ввел в машину уравнение, описывающее количество солнечной энергии, которая изливается на земную поверхность при движении светила с востока на запад. После этого данные на выходе пришли в соответствие с изменениями, наблюдаемыми в реальности, когда солнце нагревает, например, восточное побережье Северной Америки и Атлантический океан. В результате цикличность программы исчезла.

Эффект бабочки был не случайностью, но необходимостью. Допустим, небольшие пертурбации так и останутся небольшими, не перемещаясь в системе, рассуждал ученый. Приближаясь к ранее пройденному состоянию, погода уподобится и последующим состояниям. Циклы станут предсказуемыми и в конце концов потеряют все свое очарование. Чтобы воспроизвести богатый спектр реальной погоды земного шара, ее чудесное многообразие, вряд ли можно желать чего-либо лучшего, чем эффект бабочки. Как уже говорилось, данный феномен имеет и строгое научное название — «сильная зависимость от начальных условий». Зависимость эту превосходно иллюстрирует детский стишок:

Не было гвоздя — подкова пропала,
Не было подковы — лошадь захромала,
Лошадь захромала — командир убит,
Конница разбита, армия бежит,
Враг вступает в город, пленных не щадя,
Оттого что в кузнице не было гвоздя[1].

Как наука, так и жизнь учит, что цепь событий может иметь критическую точку, в которой небольшие изменения приобретают особую значимость. Суть хаоса в том, что такие точки находятся везде, распространяются повсюду. В системах, подобных погоде, сильная зависимость от начальных условий представляет собой неизбежное следствие пересечения малого с великим.

Коллеги Лоренца были изумлены тем, что он соединил в своей миниатюрной модели погоды апериодичность и сильную зависимость от начальных условий, что подтверждали его двенадцать уравнений, просчитанных с поразительной трудоспособностью не один десяток раз. Как может подобное многообразие, такая непредсказуемость — в чистом виде хаос! — возникнуть из простой детерминистской системы?


Лоренц, отложив на время занятия погодой, стал искать более простые способы воспроизведения сложного поведения объектов. Один из них был найден в виде системы из трех нелинейных, т. е. выражающих не прямую пропорциональную зависимость, уравнений. Линейные соотношения изображаются прямой линией на графике, и они достаточно просты. Линейные уравнения всегда разрешимы, что делает их подходящими для учебников. Линейные системы обладают неоспоримым достоинством: можно рассматривать отдельные уравнения как порознь, так и вместе.

Нелинейные системы в общем виде не могут быть решены. Рассматривая жидкостные и механические системы, специалисты обычно стараются исключить нелинейные элементы, к примеру трение. Если пренебречь им, можно получить простую линейную зависимость между ускорением хоккейной шайбы и силой, придающей ей это ускорение. Приняв в расчет трение, мы усложним формулу, поскольку сила будет меняться в зависимости от скорости движения шайбы. Из-за этой сложной изменчивости рассчитать нелинейность весьма непросто. Вместе с тем она порождает многообразные виды поведения объектов, не наблюдаемые в линейных системах.

В динамике жидкостей все сводится к нелинейному дифференциальному уравнению Навье-Стокса, удивительно емкому и определяющему связь между скоростью, давлением, плотностью и вязкостью жидкости. Природу этих связей зачастую невозможно уловить, ибо исследовать поведение нелинейного уравнения все равно что блуждать по лабиринту, стены которого перестраиваются с каждым вашим шагом. Как сказал фон Нейман, «характер уравнения… меняется одновременно во всех релевантных отношениях; меняется как порядок, так и степень. Отсюда могут проистекать большие математические сложности». Другими словами, мир был бы совсем иным и хаос не казался бы столь необходимым, если бы в уравнении Навье-Стокса не таился демон нелинейности.

Особый вид движения жидкости породил три уравнения Лоренца, которые описывают течение газа или жидкости, известное как конвекция. В атмосфере конвекция как бы перемешивает воздух, нагретый при соприкосновении с теплой почвой. Можно заметить, как мерцающие конвекционные волны поднимаются, подобно привидениям, над раскаленным асфальтом или другими поверхностями, излучающими теплоту. Лоренц испытывал искреннюю радость, рассказывая о конвекции горячего кофе в чашке. По его утверждению, это один из бесчисленных гидродинамических процессов в нашей Вселенной, поведение которых нам, вероятно, захочется предугадать. Как, например, вычислить, насколько быстро остывает чашка кофе? Если напиток не слишком горячий, теплота рассеется без всякого гидродинамического движения, и жидкость перейдет в стабильное состояние. Однако если кофе горячий, конвекция повлечет перемещение жидкости с большей температурой со дна чашки на поверхность, где температура ниже. Этот процесс наблюдается особенно отчетливо, если в чашку с кофе капнуть немного сливок — тогда видишь, сколь сложно кружение жидкости. Впрочем, будущее состояние подобной системы очевидно: движение неизбежно прекратится, поскольку теплота рассеется, а перемещение частиц жидкости будет замедлено трением. Как поясняет Лоренц, «у нас могут быть трудности с определением температуры кофе через минуту, но предсказать ее значение через час нам уже гораздо легче». Формулы движения, определяющие изменение температуры кофе в чашке, должны отражать будущее состояние этой гидродинамической системы. Они должны учитывать эффект рассеивания, при котором температура жидкости стремится к комнатной, а ее скорость — к нулю.

Отталкиваясь от совокупности уравнений, описывающих конвекцию, Лоренц как бы разобрал их на части, выбросив все, что могло показаться несущественным, и таким образом значительно упростил систему. От первоначальной модели не осталось почти ничего, кроме факта нелинейности. В результате уравнения, на взгляд физика, приобрели довольно простой вид. Взглянув на них — а это делал не один ученый на протяжении многих лет, — можно было с уверенностью сказать: «Я смог бы их решить».

Лоренц придерживался иного мнения: «Многие, увидев такие уравнения и заметив в них нелинейные элементы, приходят к выводу, что при решении эти элементы несложно обойти. Но это заблуждение».

Рассмотрим простейший пример конвекции. Для этого представим некоторый замкнутый объем жидкости в сосуде с ровным дном, который можно нагревать, и с гладкой поверхностью, подвергающейся в ходе опыта охлаждению. Разница температур между горячим дном и прохладной поверхностью порождает токи жидкости. Если разница небольшая, жидкость остается неподвижной; теплота перемещается к поверхности благодаря тепловой проводимости, как в металлическом бруске, не преодолевая естественное стремление жидкости находиться в покое. К тому же такая система является устойчивой: случайные движения, происходящие, например, когда лаборант нечаянно заденет сосуд, обычно замирают, и жидкость возвращается в состояние покоя.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Хаос. Создание новой науки"

Книги похожие на "Хаос. Создание новой науки" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джеймс Глейк

Джеймс Глейк - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джеймс Глейк - Хаос. Создание новой науки"

Отзывы читателей о книге "Хаос. Создание новой науки", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.