» » » » Морис Клайн - Математика. Утрата определенности.


Авторские права

Морис Клайн - Математика. Утрата определенности.

Здесь можно скачать бесплатно "Морис Клайн - Математика. Утрата определенности." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Морис Клайн - Математика. Утрата определенности.
Рейтинг:
Название:
Математика. Утрата определенности.
Автор:
Издательство:
Мир
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Математика. Утрата определенности."

Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.



Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.






Карлу Густаву Якобу Якоби принадлежат первоклассные результаты в области механики и астрономии. Тем не менее он счел необходимым выступить против высказанного Фурье мнения с критическими замечаниями, которые, однако, в лучшем случае можно назвать односторонними. В письме Адриену Мари Лежандру от 2 июля 1834 г. Якоби писал:

Фурье усматривает главное назначение математики в общественной пользе и объяснении явлений природы, но такому ученому, как он, следовало бы знать, что единственная цель науки состоит в прославлении человеческого разума, поэтому любая задача теории чисел заслуживает ничуть не меньшего внимания, чем любой вопрос о нашей планетной системе.

Разумеется, специалисты по математической физике не разделяли взглядов Якоби. Лорд Кельвин (Уильям Томсон, 1824-1907) и Питер Гутри Тэйт (1831-1901) провозгласили в 1867 г., что лучшая математика — та, которую подсказывают приложения. Именно приложения приводят к «наиболее удивительным теоремам чистой математики, редко выпадающим на долю тех математиков, которые ограничивают себя рамками чистого анализа и геометрии, вместо того чтобы обращаться к богатой и прекрасной области математической истины, лежащей в русле физических исследований».

Многие математики также с осуждением относились к тяге своих коллег к чистой математике. Так, в 1888 г. Кронекер писал Гельмгольцу, внесшему значительный вклад в развитие математики, физики и медицины: «Ваш богатый практический опыт работы с разумными и интересными проблемами укажет математикам новое направление и придаст им новый импульс… Односторонние и интроспективные математические умозаключения приводят к областям, от которых нельзя ожидать сколько-нибудь ценных плодов».

В 1895 г. Феликс Клейн, бывший в то время признанным главой математического мира, также счел необходимым выразить протест против тяги к абстрактной, чистой математике:

Трудно отделаться от ощущения, что быстрое развитие современной мысли таит для нашей науки опасность все более усиливающейся изоляции. Тесная взаимосвязь между математикой и теоретическим естествознанием, существовавшая к вящей выгоде для обеих сторон, с возникновением современного анализа грозит прерваться.

К этой же теме Клейн возвращается в «Математической теории волчка» (1897):

В математической науке назрела насущная необходимость восстановить тесную взаимосвязь между чистой наукой и теми разделами естественных наук, где математика находит наиболее важные приложения, ту взаимосвязь, которая столь плодотворно проявила себя в трудах Лагранжа и Гаусса.

Пуанкаре в «Науке и методе», несмотря на язвительные замечания по поводу некоторых чисто логических построений математиков конца XIX в. (гл. VIII), признает полезность математических исследований о постулатах, о воображаемых геометриях, о функциях со странным ходом. Чем более эти размышления уклоняются от наиболее общепринятых представлений, а следовательно, и от природы и прикладных вопросов, тем яснее они «показывают нам, на что способен человеческий ум, когда он постепенно освобождается от тирании внешнего мира, тем лучше мы познаем ум в его внутренней сущности». Но все же «главные силы нашей армии приходится направлять в сторону противоположную, в сторону изучения природы» ([1], с. 302). В «Ценности науки» Пуанкаре писал:

Нужно было бы окончательно забыть историю науки, чтобы не помнить, что стремление познать природу имело самое постоянное и самое счастливое влияние на развитие математики… Если бы чистый математик забыл о существовании внешнего мира, то он уподобился бы художнику, который умеет гармонически сочетать краски и формы, но у которого нет моделей. Его творческая сила скоро иссякла бы.

([1], с. 223.)

Несколько позже, в 1908 г., ту же тему подхватил Феликс Клейн. Его беспокоило, как бы математики не стали злоупотреблять чрезмерной свободой в создании произвольных математических структур. Произвольные структуры, предостерегал Клейн, — «смерть всякой науки». Аксиомы геометрии «не произвольные, а вполне разумные утверждения, как правило опирающиеся на наше восприятие пространства. Точное содержание геометрических аксиом определяется их целесообразностью». Занимаясь обоснованием аксиом неевклидовой геометрии, Клейн подчеркивал, что аксиома Евклида о параллельных, как того требуют наглядные представления, выполняется лишь с точностью, не превышающей определенные пределы. По другому случаю Клейн заметил, что «тот, кто пользуется привилегией свободы, должен нести и бремя ответственности». Под ответственностью Клейн понимал служение интересам познания природы.

К концу жизни Клейн, возглавлявший математический факультет Гёттингенского университета и созданный при нем институт математики — в то время признанный центр математического мира, — счел необходимым еще раз выразить свой протест против чрезмерного увлечения чистой математикой. В книге «Лекции о развитии математики в XIX в.» (1925) он напомнил об интересе, который Фурье питал к решению практических задач самыми лучшими из существовавших в начале XIX в. математических методов, и противопоставил прикладную направленность интересов основателей математической физики чисто математической утонченности методов и абстрактности идей математики XX в. Далее в «Лекциях» говорится следующее:

Если мне позволено будет пояснить свою мысль примером, я сказал бы, что математика в наши дни напоминает крупное оружейное производство в мирное время. Витрина заполнена образцами, которые своим остроумием, искусным и пленяющим глаз выполнением восхищают знатока. Собственно происхождение и назначение этих вещей, их способность стрелять и поражать врага отходят в сознании людей на задний план и даже совершенно забываются.

([98], с. 104.)

Рихард Курант, сменивший Клейна на посту главы Гёттингенского математического института, а позднее возглавивший Курантовский институт математических наук при Нью-Йоркском университете, также неодобрительно относился к увлечению чистой математикой. Так, предисловие к первому изданию «Методов математической физики» Куранта и Гильберта (1924) Курант начал следующими словами:

Испокон века математика черпала мощные импульсы из тесных взаимоотношений, существующих между проблемами и методами анализа и наглядными представлениями физики. Лишь последние десятилетия принесли с собой ослабление этой связи, математическое исследование стало часто отрываться от своих наглядных истоков и (особенно в анализе) занялось слишком исключительно уточнением своих методов и уточнением своих понятий. Это привело к тому, что у многих представителей анализа исчезло сознание взаимной связи их науки с физикой и другими дисциплинами, а физики, с другой стороны, часто утрачивали понимание проблем и методов математики и даже ее языка и всей сферы ее интересов. Без сомнения, в этой тенденции таится угроза для науки вообще: потоку научного развития грозит опасность все большего разветвления, оскудения и высыхания. Чтобы избежать этой участи, необходимо значительную часть наших усилий направить к тому, чтобы вновь соединить разделенное, выясняя внутренние связи разнородных фактов и объединяющих точек зрения. Только таким путем изучающему открывается возможность действительного овладения предметом, а исследователю подготовляется почва для органического дальнейшего развития.

([104], с. X.)

В 1939 г. Курант писал:

Серьезная угроза самой жизни науки проистекает из утверждения о том, будто математика представляет собой не что иное, как систему заключений, выводимых из определений и постулатов, которые должны быть непротиворечивыми, а в остальном произвольными порождениями свободной воли математиков. Если бы подобное описание соответствовало действительности, то в глазах любого сколько-нибудь разумного человека математика не обладала бы никакой привлекательностью. Она была бы ничем не мотивированной бесцельной игрой с определениями, правилами и силлогизмами. Представление о том, будто разум по своему произволу может создавать осмысленные аксиоматические системы, — полуправда, способная лишь вводить неискушенных людей в заблуждение. Только сдерживаемый дисциплиной ответственности перед органическим целым свободный разум, руководствуясь внутренней необходимостью, может создавать результаты, имеющие научную ценность.

Аналогичное мнение выразил в 1943 г. на страницах журнала American Scientist ведущий американский математик того времени Джордж Дэвид Биркгоф (1884-1944);

Я надеюсь, что в будущем все больше физиков-теоретиков будут обретать глубокие познания математических принципов, а математики не станут ограничиваться чисто эстетическим развитием математических абстракций.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Математика. Утрата определенности."

Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Морис Клайн

Морис Клайн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Морис Клайн - Математика. Утрата определенности."

Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.