Вернер Гейзенбер - Шаги за горизонт

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Шаги за горизонт"
Описание и краткое содержание "Шаги за горизонт" читать бесплатно онлайн.
В. Гейзенберг — один из пионеров современной теоретической физики, который закладывал основы атомной физики. С не меньшей смелостью и глубиной ставил и решал он связанные с нею философские, логические и гуманитарные проблемы.
Сборник составлен на основе двух книг В. Гейзенберга: «Шаги за горизонт» (1973) и «Традиция в науке» (1977). В нем дается теоретико-познавательное, гносеологическое осмысление новейших научных достижений, путей развития теоретической физики.
Издание рассчитано как на философов, так и на широкий круг ученых-естествоиспытателей.
Вернемся же теперь с учетом всех этих сведений к нашему первоначальному вопросу о том, привела ли нас физика частиц к фундаментальным структурам, к подлинному пониманию природы. Ясно одно: к фундаментальным частицам она нас не привела. Спектр частиц столь же сложен, как таблица химических элементов. Конечно, можно сказать, что протоны и электроны в нашей части Вселенной играют по сравнению с прочими частицами доминирующую роль; точно так же можно сказать, что молекулы воды важнее, чем многочисленные другие молекулы. Но никакого фундаментального различия тут выявить не удается. Обсуждалась еще и другая возможность, а именно та, что будущие эксперименты с еще более высокими энергиями позволят обнаружить новые частицы, например кварк с зарядом 1/3, которые окажутся более фундаментальными, чем остальные. Но ведь и эти частицы тоже будут подвержены превращениям материи в энергию и наоборот, так что неясно, в каком смысле их можно будет считать более фундаментальными[59].
Здесь, как мне кажется, следует ненадолго возвратиться к вопросу о том, должны ли мы строить все более крупные ускорители. Разумеется, нельзя исключить той возможности, что при экспериментировании с более высокими энергиями нас встретят новые неожиданности, например обнаружится новый тип каскадов или частиц. Следует, впрочем, иметь в виду, что наши сегодняшние знания не дают ни малейших оснований ожидать чего-либо подобного. Наоборот, имеющиеся факты вполне позволяют заключить, что на накопительных кольцах женевского ускорителя уже достигнута асимптотическая область; и даже в космическом излучении, энергия которого достигает 105 ГэВ, не наблюдается никаких необычных явлений[60]. Из наших сегодняшних экспериментальных знаний вытекает непротиворечивая картина, и эта картина, похоже, допускает единую, без натяжек, теоретическую интерпретацию связей, существующих между различными силами и частицами, между сильными, электромагнитными и слабыми взаимодействиями и гравитацией.
И снова зададимся вопросом о том, сумела ли физика частиц открыть фундаментальные структуры природы. Мне кажется, мы вправе сказать, что были открыты фундаментальные симметрии. Под этим выражением, «фундаментальные симметрии», имеется в виду, что закон природы, от которого зависят спектр частиц и их взаимодействие, является инвариантным при известных группах преобразований. Этими группами определяется все пространство, в котором развертывается реальный мир. Важнейшие группы — это, по-видимому, Лоренцова группа, определяющая пространство и время, группа SU2, относящаяся к электромагнитным явлениям, и масштабная группа, описывающая асимптотические явления при очень высоких энергиях. В физике частиц мы фактически исследуем структуру этих групп, и ее следует считать фундаментальной. Столь радикальное изменение понятийной системы науки — от фундаментальных частиц к фундаментальным симметриям — не всем приходится по душе; люди слишком привязаны к вопросам типа «Из чего же в конце концов состоит материя?» или «Можно ли расщепить протон при столкновении частиц очень высоких энергий?». Я считаю, однако, что эксперименты окончательно выявили бессмысленность подобных вопросов. В отличие от этого поиски фундаментальных симметрии — вполне осмысленная задача, хотя она и кажется чересчур абстрактной. Окончательные ответы мы получим только после экспериментального и теоретического изучения многочисленных конкретных подробностей явлений; и эта работа ведется в крупных физических лабораториях.
Что касается роли данной отрасли физики в рамках современной науки, то итоговый вывод из всего сказанного должен звучать, по-видимому, следующим образом: физика частиц информирует нас, строго говоря, о фундаментальных структурах природы, а не о фундаментальных частицах. Эти структуры намного более абстракты, чем нам казалось 50 лет назад, однако понять их возможно. В грандиозном напряжении, с каким наша эпоха работает в этой области, позволительно видеть выражение человеческого порыва проникнуть в интимнейшую суть вещей. Я не виноват, если эта суть не материальной природы, если нам приходится иметь тут дело скорее с идеями, чем с их материальным отображением. Во всяком случае, нам следовало бы попытаться понять эту суть.
Космическое излучение и фундаментальные проблемы физики[61]
Исследование космических лучей расширило наше понимание фундаментальных вопросов физики, поскольку обнаружилось, что ранее употреблявшиеся понятия имеют лишь ограниченную область применения. Предоставляя сведения о поведении материи в самых малых (элементарные частицы) и в самых больших масштабах (Вселенная), они как нельзя лучше способствовали переосмыслению повседневных понятий, применяющихся в физике, и подтолкнули физиков к поискам новых понятий.
С самого своего открытия примерно 60 лет назад космическое излучение играет очень заметную роль в развитии физики. От первых известий о лучах, приходящих на Землю из космического пространства, захватывающе интересная история вела к обнаружению в их составе высокоэнергетических частиц, новых частиц с неожиданными свойствами, новых фундаментальных симметрии в законах природы, в конечном счете — к обогащению наших знаний об остаточной материи и магнитных полях в межзвездном пространстве, а также о возможных источниках космического излучения. Не стану, однако, прослеживать здесь исторический ход событий. Ограничусь в своем докладе теми фундаментальными проблемами физики, на которых более или менее существенно сказался рост наших сведений о космических лучах. Какова связь между этим весьма специальным разделом физики и фундаментальной проблематикой, затрагивающей первые основания всей нашей науки? Взаимодействие между ними впервые наметилось в начале 30-х годов, когда космическое излучение сыграло видную роль в одном из значительнейших физических открытий нашего века, открытии позитрона. Само по себе это открытие было сделано, собственно говоря, не в ходе работы над космическим излучением; создавая свою теорию электрона, Дирак предсказал существование положительно заряженного антипода электрона. Однако первые убедительные факты, подтверждающие это, были установлены Андерсоном, а также Блэкетом и Оккиалини именно на материале космического излучения[62]. Первые снимки каскадов в камере Вильсона, в которой фотоны порождали пары «электрон-позитрон», а эти частицы при прохождении через материю снова порождали фотоны, предоставили несомненное доказательство существования позитронов и правильности теории Дирака. Вскоре затем удалось наблюдать позитроны и в ядерных процессах; я имею в виду бета-распад.
Следовало бы, пожалуй, добавить несколько слов о принципиальном значении этого открытия. Вплоть до того времени физики придерживались — можно сказать, более или менее бессознательно — взглядов древнегреческого философа Демокрита. Считалось, что если без конца делить материю, то мы в конечном счете остановимся на ее мельчайших частицах, уже не поддающихся дальнейшему делению, почему им и дали название «атомы». Атомы трактовались как неделимые, неизменные единицы материи, как кирпичики, из которых вся она построена; что касается ощутимых свойств разных видов материи, считалось, что они обусловлены относительным положением и движением атомов, или, как мы теперь сказали бы, элементарных частиц. Вся эта картина, какою бы правдоподобной она ни казалась, была полностью разрушена теорией Дирака и ее последствием — открытием позитрона. Суть дела заключалась не столько в существовании новой, дотоле неизвестной частицы — позднее была обнаружена масса новых частиц без каких-либо серьезных последствий для оснований физики, — сколько в открытии нового типа симметрии, сочетания частицы с античастицей, что было тесно связано с Лоренцовой группой специальной теории относительности и с превращением энергии в материю и наоборот. В нерелятивистской физике число частиц любого рода являлось константой движения, подобно энергии или импульсу. В релятивистской физике число это уже нельзя было считать надежным квантовым числом. Атом водорода, к примеру, не обязательно состоит из протона и электрона; его можно считать состоящим из одного протона, двух электронов и одного позитрона, хотя эта последняя конфигурация вносит лишь незначительную релятивистскую поправку в полную волновую функцию водорода. Одним из следствий этой ситуации явилось предположение, что при высокоэнергетическом столкновении двух частиц может возникнуть большее число новых частиц, в принципе любое, ограниченное лишь законом сохранения энергии, импульса, изоспина и т. д. Это предположение также удалось подтвердить на космическом излучении.
Собственно говоря, уже в конце 30-х годов Блэй и Вамбахер обнаружили на фотографических пластинках, засвеченных космическим излучением высоко над поверхностью Земли, так называемые «звёзды» — процессы, при которых из определенной точки пластины исходило большое число следов. По-видимому, то или иное атомное ядро подвергалось удару частицы с очень высокой энергией и под ее напором излучало целый ряд различных частиц. Интерпретировать эти «звёзды» было непросто, поскольку началом процесса мог оказаться род каскада в ядре наподобие хорошо известного электронно-позитронного каскада, сопровождающегося испарением ядра. Полученные результаты не являлись поэтому прямым доказательством порождения многих частиц при столкновении всего лишь двух частиц; догадка оставалась пока догадкой. Но с течением времени эксперименты с космическими лучами удалось усовершенствовать, и спустя 15 лет факт порождения многих частиц был определенно доказан.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Шаги за горизонт"
Книги похожие на "Шаги за горизонт" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Вернер Гейзенбер - Шаги за горизонт"
Отзывы читателей о книге "Шаги за горизонт", комментарии и мнения людей о произведении.