» » » Альберт Эйнштейн - Эволюция физики


Авторские права

Альберт Эйнштейн - Эволюция физики

Здесь можно купить и скачать "Альберт Эйнштейн - Эволюция физики" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Издательство Академии наук СССР, год 1954. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Альберт Эйнштейн - Эволюция физики
Рейтинг:
Название:
Эволюция физики
Издательство:
неизвестно
Жанр:
Год:
1954
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Эволюция физики"

Описание и краткое содержание "Эволюция физики" читать бесплатно онлайн.



Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге дается "представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями", в ней показано, как каждая последующая, уточненная картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и ее основных тенденций развития, которые в конечном счете ведут к созданию единой физической теории.

Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздается в различных странах.






По словам Вольта, пластинки ведут себя как проводники, «слабо заряженные, которые действуют непрерывно или так, что их заряд после каждого разряда вновь восстанавливается; которые, одним словом, поставляют неограниченный заряд или производят непрерывное действие, или импульс электрической жидкости».

Результат этого эксперимента удивителен потому, что разность потенциалов между медной и цинковой пластинками не уменьшается, как в случае двух заряженных проводников, связанных проволокой. Разность эта остается неизменной, и, согласно жидкостной теории, должен возникать постоянный поток электрической жидкости от высшего потенциального уровня (медная пластинка) к низшему (цинковая пластинка). Пытаясь спасти жидкостную теорию, мы можем предположить, что действует некоторая постоянная сила, которая возрождает разность потенциалов и вызывает поток электрической жидкости. Но явление в целом удивительно, если рассматривать его с энергетической точки зрения. В проволоке, по которой течет ток, порождается заметное количество теплоты, достаточное даже для того, чтобы расплавить проволоку, если она тонка. Следовательно, в проволоке создается тепловая энергия. Но вся вольтова батарея образует изолированную систему, так как она не получает энергии извне. Если мы хотим спасти закон сохранения энергии, мы должны найти место, где происходят превращения, за счет которых создается теплота. Нетрудно установить, что в батарее происходят сложные химические процессы, в которых активное участие принимают как сам раствор, так и погруженные в него медь и цинк. С энергетической точки зрения здесь имеется цепь превращений: химическая энергия ® энергия текущей электрической жидкости (тока) ® теплота. Вольтова батарея не сохраняется вечно; химические изменения, связанные с потоком электричества, после некоторого времени делают батарею неработоспособной.

Эксперимент, который по-настоящему обнаружил большие трудности в применении механистических идей, должен для впервые слушающего о нем звучать странно. Он осуществлен Эрстедом около 120 лет назад. Последний пишет:


Этими экспериментами, кажется, показано, что магнитная стрелка сдвигалась из своего положения с помощью гальванического прибора, и именно тогда, когда гальваническая цепь была замкнута, а не разомкнута, как напрасно считали несколько лет назад очень известные физики.


Предположим, что мы имеем вольтову батарею и кусок металлической проволоки. Если проволока соединена с медной пластинкой, но не связана с цинковой, то существует разность потенциалов, но ток течь не может. Предположим, что проволока изогнута в форме кольца, в центре которого расположена магнитная стрелка, причем как проволочное кольцо, так и стрелка лежат в одной и той же плоскости. Пока проволока не прикасается к цинковой пластинке, ничего не происходит. Никаких действующих сил нет, наличие разности потенциалов не оказывает влияния на положение стрелки. Кажется трудным понять, почему «очень известные физики», как выразился Эрстед, ожидали такого влияния.

Соединим теперь проволоку с цинковой пластинкой. Немедленно произойдут странные вещи. Магнитная стрелка выходит из своего первоначального положения. Один из ее полюсов направлен к читателю, если страница этой книги представляет плоскость кольца (рис. 35). Опыт доказывает, что на магнитный полюс действует сила, перпендикулярная к плоскости кольца. Перед лицом экспериментальных фактов мы едва ли можем избежать такого вывода о направлении действующей силы.

Этот эксперимент интересен в первую очередь тем, что он показывает связь между двумя на первый взгляд совершенно различными явлениями — магнетизмом и электрическим током. Имеется и другой, даже более важный момент. Сила взаимодействия между магнитным полюсом и малыми отрезками проволоки, по которой течет ток, не должна лежать вдоль линий, связывающих проволоку и стрелку или частицы текущей электрической жидкости и элементарные магнитные диполи. Сила перпендикулярна к этим линиям! Впервые появляется сила, совершенно отличная от тех сил, к которым, соответственно нашей механистической точке зрения, мы стремились свести все действия внешнего мира. Мы помним, что силы тяготения, электростатики, магнетизма, подчиняющиеся законам Ньютона и Кулона, действуют вдоль линии, соединяющей оба притягивающихся или отталкивающихся тела.

Эта трудность была еще более подчеркнута экспериментом, который с большим искусством осуществлен Роуландом почти 60 лет назад. Оставляя в стороне технические детали, мы могли бы описать этот эксперимент следующим образом. Вообразим себе маленький заряженный шар (рис. 36). Представим себе далее, что этот шар очень быстро движется по окружности, в центре которой находится магнитная стрелка. Принципиально этот эксперимент таков же, что и эксперимент Эрстеда; единственное отличие состоит в том, что вместо обычного тока мы имеем механически совершающееся движение электрического заряда. Роуланд нашел, что результат в самом деле подобен тому, который наблюдался, когда по витку проволоки протекал ток. Магнит отклоняется силой, перпендикулярной к рисунку.

Пусть теперь заряд движется быстрее. В результате сила, действующая на магнитный полюс, возрастает; отклонение магнита от его начального положения становится более заметным. Это наблюдение представляет новое большое усложнение. Не только направление силы не совпадает с линией, связывающей заряд и магнит, но и ее абсолютная величина зависит от скорости заряда. Вся механистическая точка зрения базировалась на уверенности в том, что все явления могут быть объяснены в рамках сил, зависящих только от расстояния, а не от скорости. Результат эксперимента Роуланда, конечно, подрывает эту уверенность. Всё же мы можем попробовать остаться консервативными и искать решения в рамках старых идей.

Трудности этого рода, внезапные и неожиданные препятствия в триумфальном развитии теории, часто вырастают в науке.

Иногда простое обобщение старых идей оказывается, по крайней мере временно, хорошим выходом. Например, в данном случае казалось бы достаточным расширить предыдущую точку зрения и ввести более общее понятие сил, действующих между элементарными частицами. Однако очень часто оказывается невозможным подправить старую теорию, и трудности приводят к ее упадку и к развитию новой. В данном случае сыграло роль не только поведение ничтожной магнитной иглы, которая разрушила на первый взгляд хорошо обоснованные и преуспевающие механистические теории. Следующий удар, еще более энергичный, был нанесен уже с другой стороны. Но это другая история, и мы расскажем ее позднее.

Скорость света

В Галилеевых «Беседах о двух новых науках» мы находим разговор учителя и его учеников о скорости света:

Сагредо: Но какого рода и какой степени быстроты должно быть это движение света? Должны ли мы считать его мгновенным или же совершающимся во времени, как другие движения? Нельзя ли опытом убедиться, каково оно?

Симпличио: Повседневный опыт показывает, что распространение света совершается мгновенно. Если вы наблюдаете с большого расстояния действие артиллерии, то свет от пламени выстрелов без всякой потери времени запечатлевается в нашем глазу в противоположность звуку, который доходит до уха через значительный промежуток времени.

Сагредо: Ну, синьор Симпличио, из этого общеизвестного опыта я не могу вывести никакого другого заключения, кроме того, что звук доходит до нашего слуха через боґльшие промежутки времени, нежели свет; но это нисколько не убеждает меня в том, что распространение света происходит мгновенно и не требует известного, хотя и малого времени…

Сальвиати: Малая доказательность этих и других подобных же наблюдений заставила меня подумать о каком-либо способе удостовериться безошибочно в том, что освещение, т. е. распространение света, совершается действительно мгновенно…

Далее Сальвиати продолжает объяснять метод своего эксперимента. Для того чтобы понять его идею, представим себе, что скорость света не только конечна, но и мала, что движение света замедлилось подобно тому, как может замедлиться на экране реальное движение при просмотре замедленно движущейся пленки. Два человека, А и В, держат закрытые фонари и стоят, скажем, на расстоянии одного километра друг от друга. Первый человек, А, открывает свой фонарь. Оба они согласились, что В откроет свой фонарь в момент, когда увидит свет А. Предположим, что в нашем «замедленном движении» свет проходит один километр в секунду. А посылает сигнал, открывая свой фонарь, В видит это спустя секунду и посылает ответный сигнал. Этот сигнал получает А спустя две секунды после того, как он послал свой сигнал. Иными словами, если свет движется со скоростью одного километра в секунду, то пройдет две секунды между посылкой и приемом сигналов А, если предположить, что В находится на расстоянии одного километра. Наоборот, если А не знает скорости света, но предполагает, что его компаньон действует так, как условились, и он заметил, что В открыл фонарь через две секунды после того, как он открыл свой, то он может заключить, что скорость света равна одному километру в секунду.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Эволюция физики"

Книги похожие на "Эволюция физики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Альберт Эйнштейн

Альберт Эйнштейн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Альберт Эйнштейн - Эволюция физики"

Отзывы читателей о книге "Эволюция физики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.