Джозеф Фаррелл - Боевая машина Гизы

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Боевая машина Гизы"
Описание и краткое содержание "Боевая машина Гизы" читать бесплатно онлайн.
В новой книге известный физик и инженер Джозеф Фаррелл развивает свою сенсационную теорию о том, что египетские пирамиды были частью грандиозного военного эксперимента по созданию лучевого оружия невообразимой разрушительной силы. На сей раз автор выстраивает еще более неожиданную гипотезу, что гигантский лазер — архитектурный комплекс на плато Гиза — не только был применен в древности, но и привел к катастрофическим последствиям для Солнечной системы. Более того, использованные при построении боевой машины Гизы принципы палеофизики, которые подробно изучали нацистские ученые, способны и сегодня привести к созданию невероятного по мощности оружия, способного уничтожить целую планету. Возможно, экспериментальные образцы такого оружия уже созданы и были испытаны в боевых условиях в конце прошлого века.
Эта схема и ее огромный потенциал военного применения представляют собой истинную «звезду смерти», спрятанную в Гизе за Великой пирамидой[338].
Но как все это связано с Великой пирамидой и присутствием гармоник Планка в ее конструкции? Дело в том, что геометрические модели обладают масштабной инвариантностью — то есть все, что применимо к планетарной механике (то, чем занимался Хогланд), применимо и к объектам меньших размеров. В главе VII мы продемонстрировали, как кватернионный анализ приводит к безразмерному взаимодействию коэффициентов самих констант. Поэтому вопрос теперь формулируется так; «Имеет ли безразмерное взаимодействие констант тетраэдрическую основу?» То есть, предполагая, что любая система тетраэдров, вписанных в сферическую массу, отражает простейшую из возможных геометрию взаимоотношений и взаимодействия обычного трехмерного пространства (сфера) и гиперпространства (тетраэдры), можно ли вывести базовые арифметические «гармонические уравнения» соотношений фундаментальных геометрических и физических констант π, ε, φ, Tb(постоянной Планка), L (длины Планка) и Мр (массы Планка)? Как это ни удивительно, но ответом на этот вопрос будет твердое «да».
Если представить, что наша сфера очень мала и ее радиус соответствует длине Планка L, то гармоническое значение этой величины, или коэффициент 6362, можно считать значением главного резонанса сферы этого радиуса. Учитывая, что этот радиус пересекается с тремя вершинами каждого тетраэдра в точках, расположенных на 19,5° северной или южной широты этой невероятно маленькой сферы пространства, можно нарисовать простой тригонометрический чертеж, отражающий взаимоотношение между обычным пространством и тетраэдрическим гиперпространством:
(Для тех, кто не знаком с математикой, следует пояснить, что нередко символ «d>> ошибочно считают алгебраическим символом, обозначающим число, которое нужно найти при решении задачи. Но это не так. Символ «d» означает «дифференциал», а если проще, то «малую часть» или «приращение» величины, обозначенной следующим символом. Таким образом, n = [n=dn] + dn.)
Это уравнение может быть записано в общем виде, поскольку число 0,866 близко к значению ε/π:
где n — любое число. В результате мы получаем первое тетраэдрическое гармоническое уравнение:
Это уравнение позволяет определить другие соотношения между универсальными геометрическими константами ε, φ и π, и между единицами Планка Tb, L и Мр:
Это дает результаты с погрешностью 0,2 от целой гармоники. Более того, соотношение двух самых близких результатов дают точные приближения соотношений «Пифагорова комма», найденные в книге «Звезда Смерти Гизы». Далее появляется возможность вывести два других уравнения:
Еще интереснее тетраэдрические соотношения между геометрическими константами и массой Планка и длиной Планка.
Торран предположил существование тетраэдрической версии константы ε, которую он обозначил символом ε'. Если принять коэффициент для π 314159, а для ε' 272070, то получаются следующие соотношения между ε' и π:
Это дает следующие коэффициенты:
Разделив эти соотношения на коэффициенты длины Планка и массы Планка, получим:
Разница между этими значениями составляет 0,10327.
Другие исследователи отметили связь между постоянной тонкой структуры и коммой Пифагора.
Роберт Темпл, чью работу «Хрустальное солнце» («The Crystal Sun») мы уже упоминали, известен своим бестселлером об удивительных астрономических знаниях африканского племени догонов (о чем мы тоже упоминали), «Мистерия Сириуса» («The Sirius Mystery»). Позвольте процитировать его комментарии о глубоких астрономических знаниях, зашифрованных в Гизе, и о специфических взаимосвязях с «Пифагоровой коммой», которые подробно обсуждались в моей предыдущей книге «Звезда Смерти Гизы».
Согласно новейшим данным Сириус В имеет массу, равную 1,053 массы нашего Солнца.
Теперь можно вывести корреляцию, согласно которой Великая пирамида может служить отображением Сириуса В, а пирамида Хефрена[339] — нашего Солнца.
Если пойдем по этому пути, то увидим, что точность корреляции составляет два десятичных разряда. Я пришел к этому выводу следующим образом: по мнению ведущего эксперта по пирамидам доктора И. Е. С. Эдвардса, длина каждой из сторон основания пирамиды Хефрена изначально составляла 707,75 футов. Что касается Великой пирамиды, Эдвардс утверждает, что размеры сторон ее основания составляли: северная 755,43 футов, южная 756,08 футов, восточная 755,88 футов и западная 755,77 футов. Средняя длина стороны основания составляет 755,79 футов. Если мы сравним среднюю длину стороны основания Великой пирамиды с длиной основания пирамиды Хефрена, то получим соотношение 1,0678. Согласно новейшим астрономическим данным масса Сириуса В равна 1,053 массы нашего Солнца. Разница между этими двумя соотношениями составляет всего 0,014. Тем не менее даже такое незначительное отличие может быть очень важным. Так, например, величина 0,0136 (ее можно округлить до 0,014) — это точное значение расхождения в теории гармонии между математикой октавы и математикой квинты, причем число 1,0136 носит название «Пифагоровой коммы» и было известно еще древним грекам, которые якобы позаимствовали знания о нем у египтян.
…Я много лет занимался «Пифагоровой коммой» и посчитал необходимым дать название самому десятичному приращению 0,0136: я назвал его частицей Пифагора… Я убежден, что числовой коэффициент этой частицы 136 связан со 136 степенями свободы электрона, о которых говорил знаменитый физик сэр Артур Эддингтон, и что это число плюс один дает физическую постоянную тонкой структуры, равную 137[340].
Теперь мы можем вернуться к результату 0,10327. Обратите внимание, что если разделить коэффициент этого результата на 2, то получится 516З,5. Вполне возможно, следует отметить, что угол наклона граней пирамиды составляет 51° 51′ 14″ угловой дуги.
Все эти соображения позволяют вывести первое гармоническое уравнение тетраэдрических соотношений между длиной Планка и массой Планка.
Другими словами, для функции преобразования массы в длину, по всей видимости, существует некий n-мерный тетраэдрический геометрический базис.
Мы можем продолжить исследование этой функциональной зависимости, введя постоянную тонкой структуры (обозначается ρ) со значением 1/137.
с разницей 0,0753. Отсюда выводится следующее тетраэдрическое гармоническое уравнение:
Для наших целей мы отметим подтверждение упомянутого выше функционального преобразования массы в длину, поскольку это уравнение может быть преобразовано следующим образом:
где n обозначает любое число или гармонику других значений в обозначенной функции. Обратите внимание, что коэффициент 19301859 близок к тетраэдрическому углу 19,5° (если переместить десятичную точку: 19,301859).
Если ввести постоянную Планка Tb в полученное уравнение, то тетраэдрическая природа соотношений станет еще очевиднее:
Введение еще одной константы φ подтверждает другой тетраэдрический угол:
Интуиция подсказывает мне, что эти уравнения объясняют, как генерировать тетраэдрическую гиперпространственную сигнатуру любой массы, если известны определенные характеристики. Они указывают нам, что следует искать резонанс в соотношениях π, ε', Мр, L, Tb и φ.
Еще одно подтверждение тетраэдрических свойств гравитации получится в том случае, если взять результат 10 + π и разделить его на коэффициент гравитационной постоянной 667259 — коэффициент в метрической системе (!):
Таким образом,
и
Другими словами, какой бы странной ни выглядела смесь метрических мер с пирамидальными мерами, соотношение коэффициентов фундаментальных физических констант, по всей вероятности, имеет тетраэдрическую природу. Совершенно очевидно, что настоящий топологический и математический анализ этих соотношений будет более сложным, однако арифметическое взаимодействие скаляров (самих коэффициентов) явно присутствует и оно может свидетельствовать о чем-то важном.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Боевая машина Гизы"
Книги похожие на "Боевая машина Гизы" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джозеф Фаррелл - Боевая машина Гизы"
Отзывы читателей о книге "Боевая машина Гизы", комментарии и мнения людей о произведении.