» » » » Александр Прищепенко - Огонь! Об оружии и боеприпасах


Авторские права

Александр Прищепенко - Огонь! Об оружии и боеприпасах

Здесь можно скачать бесплатно "Александр Прищепенко - Огонь! Об оружии и боеприпасах" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары, издательство Моркнига, год 2009. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Прищепенко - Огонь! Об оружии и боеприпасах
Рейтинг:
Название:
Огонь! Об оружии и боеприпасах
Издательство:
Моркнига
Год:
2009
ISBN:
978-5-903080-62-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Огонь! Об оружии и боеприпасах"

Описание и краткое содержание "Огонь! Об оружии и боеприпасах" читать бесплатно онлайн.



В книге, написанной специалистом в области боеприпасов читатель найдет экскурсы в газовую динамику, физику деления ядер и разделения изотопов, электронику больших токов и напряжений, магнитную кумуляцию, электродинамику, и даже — и историю боевого применения различного оружия.

Издание обильно иллюстрировано: чтобы убедиться в этом, достаточно раскрыть его на любой странице и полистать. Среди иллюстраций много оригинальных, которые были получены автором при проведении опытов (некоторые, наиболее безопасные из них, он рекомендует провести и читателю). Если дать себе труд прочитать несколько абзацев, то можно убедиться и в том, что книга написана живым языком. Она рассчитана на тех, кто интересуется физикой — как получивших высшее образование в этой области, так и тех, кто знает предмет в пределах школьного курса.






3) Как вмораживание, так и диффузия приводят к потерям магнитного поля: оно «захватывается» проводящим веществом и уже далеко не полностью концентрируется в области сжатия. Становится возможным «сбрасывать» излишнее поле за фронт ударной волны, препятствуя тем самым чересчур быстрому усилению магнитного давления. Подбирая характеристики вещества (степень сжатия и проводимость в ударно-сжатом состоянии) можно регулировать «сброс» поля, согласуя тем самым закон возрастания давления поля в области сжатия с гидродинамическим давлением в ударной волне, устраняя препятствие для сжатия до сколь угодно малого радиуса. Будем, однако, помнить, что работа против сил магнитного поля (а значит, и повышение энергии поля) совершается только за счет кинетической энергии вещества. Поэтому, выбор вещества, в котором будет сжиматься поле, должен представлять компромисс: если ударное сжатие будет слишком мало (очень малы промежутки между карандашами), то все магнитное поле будет вморожено, существенного движения массы вещества не будет, а значит, не будет и заметного усиления поля в области сжатия. Если же сжатие будет слишком велико, случится то, что случается в ИВМГ: магнитное давление остановит компрессию поля, потому что быстро станет «сильнее» гидродинамического давления.

.. Непрост в экспериментальной физике переход от научной болтовни к практическим решениям. Вы знаете, что «стрелять» до бесконечности вам не позволят: и время и финансирование ограничены всегда. Не верьте лжи, что перед опытом все было рассчитано: для устройства созданного впервые слишком многие параметры, необходимые для расчетов, сомнительны. Поэтому, после арифметических вычислений (в крайнем случае — после решения простейшего дифференциального уравнения) от вас требуется твердо произнести что-либо вроде: «Рабочее тело в источнике излучения будем делать из монокристалла иодида цезия!». Основания для такого решения были следующими:

1) Если конечный размер области сжатия — около десятка микрон, то фронт ударной волны должен быть очень гладким: с неровностями, размеры которых меньше размеров этой области. Вспомнилась статья об оптических исследованиях ударных волн в монокристаллах: С. Кормер утверждал, что фронт там «гладок, как зеркало», размер неровностей не превышает микрона. В любом случае, монокристалл — наиболее упорядоченная структура вещества — «последняя линия обороны»: если не выйдет в монокристалле, то не выйдет нигде!

2) Этот монокристалл должен включать атомы с самым низким потенциалом ионизации, чтобы скачок проводимости в ударной волне был существенным. Значит — цезий.

3) Этот монокристалл должен существовать в осязаемых размерах, не стоить бешеных денег не быть ядовитым, и желательно, чтобы хотя бы некоторые его свойства были исследованы ранее.

Изготовить новые устройства (цилиндрические ударно-волновые излучатели, ЦУВИ, рис. 4.25) не заняло много времени: цилиндрик монокристалла иодида цезия 1 в них был окружен кольцевым зарядом 2, детонация в котором инициировалась стаканом 3 из эластичного ВВ, через который проходили провода, соединявшие с источником питания пару медных витков 4, а в донной части — располагался детонатор.

Рис. 4.25. Внешний вид сборки Е-7 — цилиндрического ударно-волнового излучателя (ЦУВИ) и ее схема

2 марта 1983 года атмосфера на испытательной площадке была благодушная: два совместных подрыва — ВМГ и облака горючего — продемонстрировали ожидавшийся результат прибывшим на показ начальникам. Приступили к «факультативу» — испытаниям моих сборок. Все с интересом наблюдали, как собирается высоковольтная схема: магнитное поле в ЦУВИ создавалось током от разряда небольшой батареи конденсаторов. Первая сборка по каким-то причинам сработала неважно, но готовить взрывной опыт и не предусмотреть необходимость его повторения — непростительная глупость! При взрыве второй сборки лучи осциллографов рванулись вверх, «выскочив» за пределы экранов. Офицеры сообщили, что вышли из строя смесительные диоды в антеннах, стоявших в пяти метрах от взрыва. Мощность излучения по крайней мере в сто раз превысила ту, которую регистрировали в опытах с объемной детонацией! Этот опыт поставил других участников испытаний в затруднительное положение: их начальники увидели устройство размерами в десятки раз меньшее, чем объемно-детонирующие макеты, но излучавшее РЧЭМИ на два порядка большей мощности. Когда шок миновал, начались маневры, которым не приходилось слишком удивляться: от автора стали требовать описания ЦУВИ, убеждая, что оно «необходимо для отчета». Рисковать уступить такую находку, как ЦУВИ, было неразумно: не так уж часто они выпадают в жизни исследователя. Уклончивость попытались преодолеть шантажом: заявили, что диоды из строя не выходили, сигналы на осциллографах были наводками от токов запитки, РЧЭМИ вообще не было, потому как «электрончиков, электрончиков в твоем устройстве не видать», а, если не будет отчета, то и в дальнейших испытаниях офицеры участвовать не намерены. Саркастически «согласившись» с противоречивыми доводами, пришлось заметить, что, раз все это было наводками, то, действительно, нет смысла тратить время на опыты, а тем более — на написание отчета.

Разговоры о наводках продолжались много лет и «достали» настолько, что пришлось изготовить специальную демонстрационную сборку (рис. 4.26): начальное поле в ней создавалось системой постоянных магнитов, а не большими токами. Понятно, что генерируемое такой сборкой РЧЭМИ не было рекордным по мощности, но — достаточно мощным, чтобы его можно было зарегистрировать. Сладкоголосые певцы «наводок» чуть приутихли, но не заткнулись, как им настоятельно советовали, а стали списывать регистрируемые сигналы на счет электромагнитного излучения, возникающего при взрыве ВВ (хотя мощность такого излучения, по свидетельству первооткрывателей этого явления, на много порядков ниже, чем регистрировавшееся).

Рис. 4.26. Сборка ЕХ-10. Начальное поле в рабочем теле создается системой постоянных магнитов. 1 — детонатор; 2 — детонационная разводка из эластичной взрывчатки; 3 — постоянные магниты; 4 — рабочее тело; 5 — кольцо из взрывчатки

Попытки шантажа были, понятно, основной движущей силой такого рода маневров, но встречались и проблемы, с которыми специалистам в области боеприпасов ранее сталкиваться не приходилось…

…17 июня 1986 года, с аппарели[43] десантного корабля, группа испытателей сошла на остров Коневец в Ладожском озере. Нас ожидала подготовленная к испытаниям крылатая противокорабельная ракета П-15[44] (рис. 4.27).

Рис. 4.27. Подготовка к испытаниям противокорабельной ракеты П-15

П-15 разрабатывалась в конце 50-х и в системе ее наведения преобладали схемы на лампах. Имелись, правда, четыре полупроводниковых диода: два — в смесителе и два — в канале автоподстройки частоты. Будучи мишенью для излучателей РЧЭМИ, П-15 и сама нуждалась в цели, которую соорудили, подняв над шлюпкой «железный парус» (рис. 4.28). На дистанции 120 метров отраженный сигнал был очень мощным («больше, чем от крейсера при стрельбе в упор» — говорил офицер, обслуживавший ракету).

Рис. 4.28. «Железный парус» этой шлюпки захватывала головка самонаведения ракеты

…Радиолокационная головка самонаведения жадно захватывала «железный парус». После подрыва сборки в полусотне метрах от ракеты, стрелка прибора «ток смесителя» заметно дернулась, но на осциллографе контрольного стенда осталась «картинка», соответствующая удержанию цели головкой самонаведения. Это было невероятно: надо только представить, насколько мощным должно быть ударное возбуждение от наносекундного импульса РЧЭМИ, чтобы стрелочный прибор среагировал на него двукратным отклонением от номинального уровня! И, тем не менее — ракета цель не потеряла! Пара следующих дней принесла аналогичные результаты: хотя сборки подрывали все ближе к ракете, потери цели головкой ее самонаведения не фиксировались.

Пошли дожди, опыты прервали и стали обследовать «пятнадцатую». Выяснилось, что все ее диоды имеют одинаковые сопротивления, как для «прямого», так и для «обратного» тока. После долгих препирательств, их стали поочередно заменять резисторами с сопротивлениями в сотни Ом. Можно было заменить на резисторы все диоды в канале автоподстройки частоты и один в смесителе (три из четырех имевшихся во всей схеме) и все равно захват «железного паруса» не срывался: на дистанции в сотню метров мощность отраженного от него сигнала превышала все разумные пределы!

…Следующий солнечный день был ветреным, Ладога покрылась пенными «барашками». В ракете заменили все диоды на новые, сборку расположили в 20 метрах под углом примерно 30 градусов к оси головки самонаведения и стали ждать. Наконец, кто-то заорал: «Баржа!» Начали лихорадочно заряжать батарею, приводить в рабочее состояние ракету. Ракета «увидела» шедшую на дистанции около трех морских миль баржу и сборку подорвали. «Захват» был немедленно потерян. Тот же результат получили и когда ракета «смотрела вслед» уже уходящей барже, а сборку (последнюю из имевшихся) подорвали в 30 метрах под углом в 45 градусов к линии визирования головки.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Огонь! Об оружии и боеприпасах"

Книги похожие на "Огонь! Об оружии и боеприпасах" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Прищепенко

Александр Прищепенко - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Прищепенко - Огонь! Об оружии и боеприпасах"

Отзывы читателей о книге "Огонь! Об оружии и боеприпасах", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.