Александр Прищепенко - Огонь! Об оружии и боеприпасах

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Огонь! Об оружии и боеприпасах"
Описание и краткое содержание "Огонь! Об оружии и боеприпасах" читать бесплатно онлайн.
В книге, написанной специалистом в области боеприпасов читатель найдет экскурсы в газовую динамику, физику деления ядер и разделения изотопов, электронику больших токов и напряжений, магнитную кумуляцию, электродинамику, и даже — и историю боевого применения различного оружия.
Издание обильно иллюстрировано: чтобы убедиться в этом, достаточно раскрыть его на любой странице и полистать. Среди иллюстраций много оригинальных, которые были получены автором при проведении опытов (некоторые, наиболее безопасные из них, он рекомендует провести и читателю). Если дать себе труд прочитать несколько абзацев, то можно убедиться и в том, что книга написана живым языком. Она рассчитана на тех, кто интересуется физикой — как получивших высшее образование в этой области, так и тех, кто знает предмет в пределах школьного курса.
Можно, конечно, восславить «безумство храбрых», но, скорее всего, каждый из восславленных предпочел бы в этой ситуации стрелять ЭМБП. Во-первых, сделать это можно «из-за угла», наплевав ради безопасности на рыцарские манеры; во-вторых, что более важно, дальность стрельбы определяется не рассеянием РЧЭМИ, а возможностями носителя ЭМБП, соответственно и цель может быть выведена из строя на большей дальности, а значит — менее вероятно попадание уже неуправляемой ракеты в обороняемый объект.
Попытаемся представить и тяжкую долю тех. кто сам оказался целью РЧЭМИ: кто в страде боевой трудился на, может, и не столь героических, но от этого не менее важных постах операторов РЛС. Любое электронное устройство на полупроводниковой элементной базе может быть выведено из строя, если только плотность потока мощности воздействующего РЧЭМИ достаточно высока, но пока не известны модели, адекватно описывающие реакцию сколько-нибудь сложного электронного устройства на облучение сверхширокополосным РЧЭМИ. Может наблюдаться кумуляция эффектов и/или самопроизвольное восстановление некоторых схем спустя время от нескольких миллисекунд до часов и даже дней (т. н. эффект «временного ослепления»). Словом, ни к чему тут будут отработанные расчетами до автоматизма навыки замены вышедшего из строя блока исправным: сначала предстоят мучительные раздумья, какой же из блоков надо заменить, а это непросто, особенно — во время боя.
Наработать же такой опыт и выдать, пусть самые общие, рекомендации можно только по результатам многочисленных экспериментов — стольких, что тогдашние темпы производства ЭМБП обеспечить не могли. Небольшим подспорьем стал источник РЧЭМИ со сверхпроводниковым коммутатором — опять же результат попытки помочь друзьям.
…Попросил о помощи В. Слепцов из НИИ вакуумной техники: он хотел определить критические токи в создаваемых его лабораторией высокотемпературных сверхпроводниках — микронной толщины пленках из YBa2Cu3O7, нанесенных па подложки из искусственного сапфира. Как предполагал Слепцов, токи, при которых такие пленки должны переходить из разряда сверхпроводников в плохие изоляторы, составляли килоамперы. Но скачки сопротивления ведут к скачкам тока в контуре, что не может не сопровождаться существенным изменением магнитного момента, второй производной которого по времени, как известно, пропорциональна мощность РЧЭМИ. Пришлось попросить, чтобы пленки были напылены на сапфировые подложки в виде колец.
В опытах (рис. 4.59) одновитковый соленоид из меди 1 окружал кольцо 2. Оба погружалось в жидкий азот 3, где кольцо и обретало сверхпроводимость. Источник тока формировал, в соленоиде 1 импульс с коротким (в сотню наносекунд) фронтом. Индуктивность соленоида вначале мала, потому что внутри него находится сверхпроводящая вставка, поэтому возрастание тока определяется только возможностями формирователя. Магнитное поле сосредотачивается в узком зазоре между сверхпроводником и соленоидом: в сверхпроводник оно не может проникнуть, потому что там индуцируется ток, полностью его компенсирующий, а в соленоид из меди хоть и проникает, но — медленно. Когда же ток в сверхпроводнике превышает критическое значение, возникает фазовый переход, по одну сторон которого пленка еще сверхпроводящая, а по другую — проводит плохо. Фронт перехода двигается от периферии кольца к его оси. Как оказалось, скорость этого движения довольно велика (десяток километров в секунду или — сантиметр в микросекунду), но слабо зависит от индукции внешнего магнитного поля. Это позволяет за те доли микросекунды, пока магнитное поле «ест» сверхпроводимость кольца шириной в несколько миллиметров, успеть «накачать» существенную энергию в соленоид. Когда же фронт фазового перехода достигает внутренней границы кольца, ток, а значит, и магнитный момент меняются очень быстро и эмиссия РЧЭМИ существенна, хотя и уступает по мощности излучению ЦУВИ почти два порядка.
Рис. 4.59. Схема излучателя с переключающим элементом из сверхпроводникаЦенность сверхпроводникового излучателя, помимо его простоты (рис. 4.60) — в том, что его можно сделать невзрывным (например, получив импульс тока в соленоиде от кабельного формирователя), и в этом качестве использовать для исследований воздействия сверхширокополосного РЧЭМИ па электронику в лабораторных, а не полигонных условиях, что во многих случаях более удобно. Многие образцы электроники, подтвердившие ранее свою стойкость к ЭМИ ЯВ, выходили из строя при воздействии сверхширокополосного импульса РЧЭМИ: принимая во внимание различия в спектральном составе излучения в том и в другом случае, такой результат можно было предвидеть.
Рис. 4.60. Элементы «сверхпроводникового» излучателя: соленоид с подводящими кабелями и кольцо из сверхпроводника…Особенности сверхширокополосного излучения — распространение по всем направлениям от источника и прием целью со всех направлений — просто-таки горланят о подходящем ему военном применении: в боеприпасах, разрывы которых вероятны на любых направлениях относительно цели. Правда, на больших расстояниях, когда воздействующие плотности мощности или энергии РЧЭМИ близки к минимальным эффективным значениям, функциональное поражение становится вероятностным, зависящим от расположения точки подрыва ЭМБП. Но ведь и для осколков, с увеличением дистанции от подорванного боеприпаса, сплошное поражение целей вырождается в вероятностное.
…Одним из парадоксов электромагнитного оружия является то, что создавать чересчур мощный и одновременно малоразмерный источник РЧЭМИ бессмысленно. Как уже известно читателю, электромагнитное излучение представляет колебания магнитного и электрического полей, и, если напряженность последнего достаточно высока — может произойти пробой среды, где распространяется излучение. Конструкция самого источника тщательно изолируется, но и на его поверхности плотность энергии излучения не должна превышать пробивного значения для окружающего воздуха, иначе РЧЭМИ не поразит цель, а будет поглощено «чехлом» из образованной им же хорошо проводящей плазмы. На такой чересчур мощный источник пришлось бы ставить дополнительный слой изолятора, искусственно увеличивая его размер, чтобы снизить плотность энергии РЧЭМИ на поверхности и не допустить пробоя! Излучение ослабляется пропорционально квадрату расстояния, значит и максимальная дальность поражения (R) жестко связана с размером источника (r) и отношением плотностей энергии РЧЭМИ: пробивной (Dd) к минимально необходимой для требуемого воздействия на цель (Deff):
Для направленных источников РЧЭМИ в качестве «r» выступает длина (рис. 4.61), для изотропных «r» — радиус.
Рис. 4.61. Предельная дальность поражения целей из-за ограничения мощности излучения пробоем воздуха, жестко связана с габаритами электромагнитного оружия. В левом верхнем углу — схема виркатораЕсли уж «стрелять» узким пучком РЧЭМИ, то не с самолетов, с километровых высот: там потенциал пробоя (Dd) разреженного воздуха мал, значит, будет низка и начальная плотность энергии РЧЭМИ, а до земли дойдет пучок, вполне безопасный для цели. Разумнее стрелять «снизу» (где уровень Dd выше) «вверх».
Тот же пробой делает практически нереальным и создание на поле боя таких плотностей мощности РЧЭМИ, которые представляли бы опасность для человека.
Пробой — фундаментальное ограничение, с которым ничего нельзя поделать, и, как угодно изменяя конструкцию источника РЧЭМИ, невозможно устранить связь его размеров с теми максимальными дальностями поражения электроники, которые можно ожидать при боевом применении. В чистом, сухом воздухе на уровне моря, цель средней стойкости поражается на дальности, не превышающей тысячу размеров источника (R<1000 г), даже если плотность энергии РЧЭМИ на его поверхности максимально возможная — пробивная. Кстати, пробивная напряженность для воздуха тем выше, чем короче импульс РЧЭМИ (рис. 4.62), так что применяя источник, формирующий короткие импульсы, можно получить выигрыш не только в эффективности действия по цели, но и сделать устройство более энергоемким.
Рис. 4.62. Уровни плотности мощности и энергии импульса РЧЭМИ, приводящие к пробою чистого, сухого воздуха при нормальном атмосферном давлении па уровне моряОбычно подобные пояснения быстро надоедали высокопоставленным собеседникам и следовала реплика: «Ну, и что?». Действительно, ни студентов, ни заказчиков утомлять подобными рассуждениями нельзя. И если первые, помня о дамокловом мече неудовлетворительной оценки, промолчат, то вторые вполне могут мстительно решить про себя не иметь больше дел с «засирающим мозг». Законы жанра требуют заинтересовать собеседника чем-то близким, дорогим и понятным.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Огонь! Об оружии и боеприпасах"
Книги похожие на "Огонь! Об оружии и боеприпасах" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Прищепенко - Огонь! Об оружии и боеприпасах"
Отзывы читателей о книге "Огонь! Об оружии и боеприпасах", комментарии и мнения людей о произведении.