» » » » Амит Госвами - Самосознающая вселенная. Как сознание создает материальный мир


Авторские права

Амит Госвами - Самосознающая вселенная. Как сознание создает материальный мир

Здесь можно скачать бесплатно "Амит Госвами - Самосознающая вселенная. Как сознание создает материальный мир" в формате fb2, epub, txt, doc, pdf. Жанр: Философия. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Амит Госвами - Самосознающая вселенная. Как сознание создает материальный мир
Рейтинг:
Название:
Самосознающая вселенная. Как сознание создает материальный мир
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Самосознающая вселенная. Как сознание создает материальный мир"

Описание и краткое содержание "Самосознающая вселенная. Как сознание создает материальный мир" читать бесплатно онлайн.



В книге Госвами подвергается сомнению существование «внешней», настоящей, объективной реальности. Утверждается, что вселенная является самосознающей и именно само сознание создает физический мир и объясняется, каким образом единое сознание кажется столь многими отдельными сознаниями.

Книга Госвами — попытка преодолеть извечный разрыв между наукой и духовностью через монистический идеализм, разрешающий парадоксы квантовой физики.

Автор книги — физик, профессор Института теоретических наук Орегонского университета.






Рис. 6. Идея де Бройля: не могут ли электроны быть стационарными волнами в ограниченном пространстве атома?


Разумеется, де Бройль приводил в поддержку своей идеи гораздо более сложные доводы, но все равно ему было трудно добиться одобрения своей диссертации. В конце концов ее послали на отзыв Эйнштейну. Эйнштейну, который первым осознал двойственную природу света, было не трудно понять, что де Бройль вполне мог быть прав: материя вполне может быть такой же двойственной, как свет. Де Бройлю присудили искомую степень, когда Эйнштейн дал о его диссертации такой отзыв: «Это может выглядеть безумным, но, в действительности, это логично».

В науке окончательным арбитром всегда служит эксперимент. Правильность идеи де Бройля о волновой природе электрона блестяще продемонстрировал эксперимент, в котором пучок электронов пропускали через кристалл (трехмерный «зонтик», подходящий для дифракции электронов) и фотографировали. Получилась дифракционная картина (рис. 7).

Рис. 7. Концентрические дифракционные кольца показывают волновую природу электронов


Если материя — волна, язвительно заметил один физик другому в конце проходившего в 1926 г. семинара, посвященного волнам де Бройля, то должно быть волновое уравнение, описывающее волну материи. Физик, которому принадлежало это замечание, сразу же забыл о нем, но тот, кто его услышал, — Эрвин Шрёдингер — в дальнейшем открыл волновое уравнение для материи, теперь известное как уравнение Шредингера. Оно является краеугольным камнем, заменившим в новой физике законы Ньютона. Уравнение Шрёдингера используется для предсказания всех удивительных качеств субмикроскопических объектов, обнаруживаемых в наших лабораторных экспериментах. Вернер Гейзенберг открыл это же самое уравнение еще раньше, но в менее четкой математической форме. Математический формализм, выросший из работ Шрёдингера и Гейзенберга, называется квантовой механикой.

Предложенная де Бройлем и Шрёдингером идея волны материи порождает удивительную картину атома. Она объясняет простыми терминами три самых важных свойства атомов: их устойчивость, их тождественность друг другу и их способность восстанавливаться. Я уже объяснял, как возникает устойчивость, — это был великий вклад Бора. Тождественность атомов определенного вида — это просто следствие тождественности волновых паттернов в ограниченном пространстве; структура стационарных паттернов определяется тем, каким образом ограничивается движение электронов, а не их окружением. Музыка атома, его волновой паттерн, остается одной и той же, независимо от того, где он находится — на Земле или в туманности Андромеды. Более того, стационарный паттерн, зависящий только от условий своего ограничения, не имеет никаких следов прошлой истории, никакой памяти; он снова и снова восстанавливается в том же самом виде.


Волны вероятности

Волны электронов не похожи на обычные волны. Даже в эксперименте по дифракции индивидуальные электроны обнаруживаются на фотографической пластинке как локализованные индивидуальные события; только наблюдая паттерн, создаваемый всем пучком электронов, мы обнаруживаем свидетельство их волновой природы — дифракционную картину. Волны электронов — это волны вероятности, говорил физик Макс Борн. Они дают нам вероятности: например, мы, весьма вероятно, обнаружим частицу там, где волновые возмущения (или амплитуды) велики. Если вероятность нахождения частицы мала, амплитуда волны будет слабой. Представьте себе, что вы наблюдаете уличное движение с вертолета, висящего над улицами Лос-Анджелеса. Если бы автомобили описывались уравнением Шрёдингера, мы бы сказали, что волна сильна в местах транспортных пробок, а между пробками волна слаба.

Кроме того, волны электронов принято представлять как волновые пакеты. Используя понятие пакетов, мы можем делать амплитуду волны большей в определенных областях пространства, и малой во всех остальных местах (рис. 8). Это важно, поскольку волна должна представлять локализованную частицу. Волновой пакет — это пакет вероятности, и Борн утверждал, что для волн электронов квадрат амплитуды волны — технически называемый волновой функцией — в некоторой точке пространства дает нам вероятность обнаружения электрона в этой точке. Эта вероятность может быть представлена колоколообразной кривой (рис. 9).

Рис. 8. Наложение многих простых волн образует типичный локальный волновой пакет (Из книги П. У. Аткинса «Кванты: справочник понятий», Оксфорд: Клейрдон Пресс, 1974)


Рис. 9. Типичное распределение вероятности


Принцип неопределенности Гейзенберга

Вероятность порождает неопределенность. Для электрона или любого другого квантового объекта мы можем говорить только о вероятности его нахождения в таком-то и таком-то месте, либо о том, что его импульс (произведение массы на скорость) равен тому-то и тому-то, но эти вероятности образуют распределение, описываемое колоколообразной кривой. Вероятность будет максимальной для некоторого значения положения, и это будет наиболее вероятное местонахождение электрона. Однако будет целая область положений, в которых есть значительные шансы обнаружить электрон. Ширина этой области соответствует неопределенности положения электрона. Такие же доводы позволяют нам говорить о неопределенности импульса электрона.

Исходя из подобных соображений, Гейзенберг математически доказал, что произведение неопределенностей положения и импульса электрона больше или равно определенному малому числу, называемому постоянной Планка. Это число, первоначально открытое Планком, устанавливает количественный масштаб, в котором квантовые эффекты становятся применимо большими. Если бы постоянная Планка не была такой малой, эффекты квантовой неопределенности вторгались бы даже в нашу повседневную макроскопическую реальность.

В классической физике любое движение определяется силами, которые им управляют. Коль скоро мы знаем начальные условия (положение и импульс объекта в некоторый начальный момент времени), мы можем вычислить его точную траекторию, используя уравнения движения Ньютона. Поэтому классическая физика ведет к философии детерминизма — идее возможности полного предсказания движения всех материальных объектов.

Принцип неопределенности подрывает философию детерминизма. Согласно принципу неопределенности, мы не можем одновременно точно определить положение и скорость (или импульс) электрона; любая попытка точного измерения одного делает неопределенным знание другого. Поэтому никогда нельзя точно определить начальные условия для вычисления траектории частицы, и понятие четко определенной траектории частицы становится непригодным.

По той же причине орбиты Бора не дают строгого описания местонахождения электрона: положение действительных орбит неопределенно. Мы действительно не можем говорить, что электрон, находящийся на том или ином энергетическом уровне, располагается на таком-то и таком-то удалении от ядра.


Сомнительные фантазии

Рассмотрим несколько фантастических сценариев, авторы которых не осознавали значение принципа неопределенности или забывали о нем.

В научно-фантастической книге «Фантастическое путешествие» и снятом по ней фильме объектам придавали миниатюрные размеры путем уплотнения. Задумывались ли вы когда-либо о том, можно ли сжимать атомы? В конце концов, они, по большей части, состоят из пустого пространства. Возможно ли такое? Решите это сами, исходя из принципа неопределенности. Размер атома дает примерное представление о степени неопределенности положения его электронов. Уплотнение атома будет помещать его электроны в меньший объем пространства, тем самым снижая неопределенность их положения; но неопределенность их импульса должна возрастать. Увеличение неопределенности импульса электрона означает увеличение его скорости. Таким образом, в результате уплотнения скорость электронов возрастает и они более способны покидать атом[9].

В еще одном примере научной фантастики капитан Кирк (из классического телесериала «Звездный путь») дает команду: пуск! На приборной панели нажимают кнопку: оп-ля, люди, стоящие, на платформе исчезают, появляясь в месте назначения, которое, как предполагается, представляет собой неисследованную планету, но выглядит очень похоже на съемочный павильон в Голливуде. В одном из своих романов, основанном на сериале «Звездный путь», Джеймс Блиш попытался охарактеризовать этот процесс как квантовый скачок. Подобно тому как электрон перескакивает с одной атомной орбиты на другую, не пересекая промежуточное пространство, то же самое происходило бы и с командой космического корабля «Энтерпрайз». Вы можете видеть, в чем здесь проблема. То, когда и куда электрон совершит скачок, не подчиняется закону причинности и непредсказуемо вследствие законов вероятности и неопределенности квантового скачка. Подобный квантовый транспорт заставлял бы героев «Энтерпрайза», по крайней мере иногда, очень долго ждать, чтобы куда-то попасть[10].


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Самосознающая вселенная. Как сознание создает материальный мир"

Книги похожие на "Самосознающая вселенная. Как сознание создает материальный мир" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Амит Госвами

Амит Госвами - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Амит Госвами - Самосознающая вселенная. Как сознание создает материальный мир"

Отзывы читателей о книге "Самосознающая вселенная. Как сознание создает материальный мир", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.