» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






В математических сюжетах, имеющих отношение к данной книге — то есть к Гипотезе Римана, — логарифмическая функция присутствует повсеместно. Мы поговорим о ней куда более подробно в главах 5 и 7, и она будет играть роль настоящей звезды нашего рассказа, когда в главе 19 мы повернем наконец Золотой Ключ. Пока же давайте примем на веру, что это — функция в только что описанном смысле, по-настоящему важная математическая функция, и при этом обратная к показательной функции: если y = ex, то x = ln y.

Теперь я перейду прямо к сути дела и покажу вам логарифмическую функцию, но вместо того, чтобы двигаться вперед шагами, соответствующими умножению на e, давайте умножать аргументы на 1000. Как мы уже говорили, когда функцию представляют в виде таблицы, надо выбрать аргументы (а также число знаков после запятой — в нашем случае четыре). Клянусь, что это та же самая функция. Чтобы лучше было видно, что тут происходит, я справа добавил в таблицу еще две колонки: первая из них — это просто правая колонка из таблицы 3.2, а вторая выражает в процентах отклонение нашей колонки номер 2 от колонки номер 3. Результат приведен в таблице 3.3.

N ln N N/π(N) Ошибка, % 1 000 6,9078 5,9524 16,0409 1 000 000 13,8155 12,7392 8,4487 1 000 000 000 20,7233 19,6665 5,3731 1 000 000 000 000 27,6310 26,5901 3,9146 1 000 000 000 000 000 34,5388 33,5069 3,0794 1 000 000 000 000 000 000 41,4465 40,4204 2,5386

Таблица 3.3.

Представляется разумным следующее утверждение: N/π(N) близко к ln N, причем тем ближе, чем больше становится N.

У математиков есть специальная запись для этого: N/π(N) ~ ln N. (Читается так: «N, деленное на π(N), асимптотически стремится к ln N»). Волнистый знак в этой формуле по науке называется «тильда», однако, судя по моему опыту, математики нередко называют его просто «волной».

Если слегка переоформить этот факт, следуя обычным правилам алгебры, то мы получим следующее утверждение.

Теорема о распределении простых чисел

π(N) ~ N/ln N

Разумеется, мы эту теорему не доказали — мы просто увидели, что такое утверждение правдоподобно. Это очень важный результат, настолько важный, что он называется Теоремой о распределении простых чисел. Это не какая-то там теорема о распределении простых чисел, нет, а Теорема о Распределении Простых Чисел. Специалисты по теории чисел нередко пишут просто «ТРПЧ», и в этой книге мы так и будем поступать.


IX.

И наконец, получим два следствия из ТРПЧ (в предположении, конечно, что она верна). Чтобы вывести эти следствия, сначала заметим, что в некотором смысле (логарифмическом смысле!) при работе со всеми числами вплоть до некоторого большого N большинство из этих чисел вполне сравнимы по величине с самим N. Например, среди всех чисел от 1 до одного триллиона более 90 процентов имеют 12 или более разрядов и в этом смысле вполне сравнимы с триллионом (у которого 13 разрядов), а не, скажем, с одной тысячей (с ее четырьмя разрядами).

Если на интервале от 1 до N имеется N/ln N простых чисел, то средняя плотность простых в этом интервале составляет 1/ln N. А поскольку большинство чисел в этом интервале сравнимы по размеру с числом N в том грубом смысле, который я только что описал, то справедливым будет заключение, что в районе числа N плотность простых чисел есть 1/ln N. Именно так и есть. В конце первого раздела данной главы мы подсчитали число простых в каждом блоке из 100 чисел, предшествующих 100, 500, 1000, 1 миллиону и 1 триллиону. Результаты этих подсчетов были такими: 25, 17, 14, 8 и 4. Соответствующие значения выражения 100/ln N (т.е. его значения при N = 100, 500 и т.д). с точностью до ближайшего целого числа таковы: 22, 16, 14, 7 и 4. Другой способ выразить то же самое — это сказать, что в окрестности большого числа N вероятность того, что некоторое число окажется простым, ~ 1/ln N.

Руководствуясь той же грубой логикой, можно оценить величину N-го простого числа. Рассмотрим отрезок числового ряда от 1 до K для какого-нибудь большого числа K. Если в этом интервале простых чисел, то в среднем следует ожидать, что первым простым, которое мы встретим, будет число К:C, вторым — число 2K:C, третьим — 3K:C и т.д. N-е простое будет находиться где-то около числа NK:C, а C-е (другими словами, последнее простое в этом интервале) окажется около числа K:C, что, понятно, равно просто K. И вот, если верна ТРПЧ, то количество простых чисел C есть К/ln K, а потому N-е простое в действительности встретится вблизи числа NK:(К/ln K), или, другими словами, вблизи числа Nln K. Поскольку большинство чисел в этом интервале сравнимы по величине с числом K, здесь можно поменять местами N и K, а потому N-е простое есть по величине ~ N/ln N. Я знаю, что такое рассуждение выглядит небольшим жульничеством, но в действительности оно дает неплохую оценку, которая к тому же становится все лучше и лучше «по принципу волны». Эта оценка предсказывает, например, что триллионное простое число равно 27 631 021 115 929, а на самом деле триллионное простое число есть 30 019 171 804 121, так что ошибка составляет 8 процентов. Выраженные в процентах ошибки для тысячного, миллионного и миллиардного простого числа равны соответственно 13, 10 и 9.

Следствия из ТРПЧ

Вероятность того, что число N простое, ~ 1/ln N.

N-е простое число ~ Nln N.

Эти утверждения не просто следуют из ТРПЧ; сама ТРПЧ также следует из них. Если математически доказать справедливость любого из них, то в качестве следствия получится ТРПЧ. Каждый из этих результатов равносилен ТРПЧ, и его можно считать просто альтернативной формулировкой этой теоремы. В главе 7.viii мы познакомимся с другим, более важным способом переформулировать ТРПЧ.

Глава 4. На плечах гигантов

Первым человеком, которому открылась истина, содержащаяся в Теореме о распределении простых чисел (ТРПЧ), был Карл Фридрих Гаусс, живший с 1777 по 1855 год. Гаусс, как уже говорилось в главе 2.v, вполне может претендовать на звание величайшего математика из всех вообще когда-либо живших. В течение своей жизни он был известен как Princeps Mathematicorum — Князь Математиков, а после его смерти король Ганновера Георг V распорядился о выпуске памятной медали в его честь, с указанием этого титула.[21]

Гаусс был чрезвычайно невысокого происхождения. Его дед был безземельным крестьянином, а отец — перебивавшимся с места на место садовником и каменщиком. Гаусс ходил в самую скромную местную школу. Знаменитый эпизод, который, как рассказывают, произошел в этой школе, имеет гораздо больше шансов оказаться правдой, чем большинство обычных историй такого рода. Однажды учитель, желая устроить себе получасовой перерыв, дал классу задание сложить друг с другом первые 100 чисел. Почти мгновенно Гаусс бросил грифельную доску на учительский стол со словами «Ligget se!», что на местном крестьянском диалекте того времени означало: «Вот он [ответ]!» Карл мысленно расположил числа горизонтально в порядке (1, 2, 3, …, 100), затем в обратном порядке (100, 99, 98, …, 1), а после этого сложил два списка вертикально: (101, 101, 101, …, 101). Получилось 100 раз число 101, а поскольку числа были выписаны дважды, ответ равен половине этой суммы, т.е. 50 умножить на 101, что равно 5050. Совсем просто, когда вам об этом рассказали, но все же это не тот способ, который сам собой придет в голову обычному десятилетнему мальчику; да и обычному взрослому лет в тридцать тоже, если уж на то пошло.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.