» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Базельская задача подводит нас к дзета-функции — объекту, с которым мы имеем дело в Гипотезе Римана. Но прежде чем мы сможем познакомиться с дзета-функцией, надо вспомнить кое-что из математических основ: степени, корни и логарифмы.


II.

Степени — это прежде всего повторяющееся умножение. Число 123 — это 12×12×12, где перемножаются три сомножителя, а 125 — это 12×12×12×12×12, где сомножителей пять. Что получится, если умножить 123 на 125? Это будет (12×12×12)×(12×12×12×12×12), что, конечно, составляет 128. Надо просто сложить степени: 3 + 5 = 8. В этом и состоит первое великое правило действий со степенями.

1-е правило действий со степенями:

xm×xn = xm + n.

(Давайте я здесь прямо и скажу, что во всем этом разделе мы будем иметь дело только с положительными значениями буквы x. Возводить в степень нуль — пустая трата времени, а возведение в степень отрицательных чисел приводит к занятным проблемам, о которых мы поговорим позднее.)

Что будет, если разделить 125 на 123? То есть вычислить (12×12×12×12×12)/(12×12×12). Можно сократить три множителя 12 сверху и снизу, и в результате останется 12×12, т.е. 122. Как видно, это все равно что вычесть степени.

2-е правило действий со степенями:

xm: xn = xm − n.

А теперь возведем 125 в куб: (12×12×12×12×12)×(12×12×12×12×12)×(12×12×12×12×12) дает 1215. На этот раз степени перемножаются.

3-е правило действий со степенями:

(xn)m = xmn.

Таковы три самых важных правила, которые говорят нам, как обращаться со степенями. В дальнейшем мы будем ссылаться на них как на «правила действий со степенями» без дополнительных объяснений. Однако это пока не все правила. Нам потребуется еще несколько, потому что до сих пор у нас были степени, выражаемые положительными целыми числами. А как обстоит дело с отрицательными и дробными степенями? А со степенью нуль?

Начав с последнего, заметим, что если x0 вообще что-нибудь будет означать, то хорошо бы добиться согласованности с теми правилами, которые у нас уже есть, потому что они являются прямым выражением здравого смысла. Возьмем во 2-м правиле n равным m. Тогда в правой части, как видно, получится x0. А в левой части будет xm: xm. Но когда число делится само на себя, получается единица.

4- e правило действий со степенями:

x0 = 1 для всякого положительного числа x.

2-е правило можно использовать и для того, чтобы придать смысл отрицательным степеням. Разделим 123 на 125. Согласно 2-му правилу, ответ должен быть равен 122. Но при этом он равен и (12×12×12)/(12×12×12×12×12), что после сокращения трех множителей 12 в числителе и знаменателе даст 1/122.

5-е правило действий со степенями:

x−n = 1/xn (в частности, x1 = 1/x).

3-е правило наводит нас на мысль о том, что же должны означать дробные степени. Как можно поступить с величиной x1/3? Например, возвести ее в куб, тогда по 3-му правилу должно получиться просто x. Значит, x1/3 есть просто кубический корень из x. (Определение «кубического корня из x»: это число, куб которого равен x). 3-е правило теперь говорит нам, какой смысл имеет всякая дробная степень; x2/3 — это кубический корень из x, возведенный в квадрат (или, что одно и то же, кубический корень из x2).

6-е правило действий со степенями:

хm/n есть корень n-й степени из хm.

Поскольку 12 — это 3×4, получаем, что 125 равно (3×4)×(3×4)×(3×4)×(3×4)×(3×4). Это можно переписать как (3×3×3×3×3)×(4×4×4×4×4). Короче говоря: 125 = 35×45. Такое верно и в общем случае:

7-е правило действий со степенями:

(x×y)n = xn×yn.

А что насчет возведения x в иррациональную степень? Что могло бы означать 12√2, или 12π, или 12e? Здесь мы снова попадаем в царство анализа. Вспомним про ту последовательность из главы 1.vii, которая сходилась к √2. Она выглядела так: 1/1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, … Продолжая эту последовательность достаточно далеко, можно подобраться к √2 сколь угодно близко. А из 6-го правила, которое говорит о значении всякой дробной степени, понятно, что же представляет собой число 12, возведенное в каждую из этих дробных степеней. Разумеется, число 121 равно просто 12, а 123/2 — это квадратный корень из 12 в кубе; 41,569219381…. Далее, 127/5 — это корень пятой степени из 12 в седьмой степени, что равно 32,423040924…. Таким же образом, 1217/12 равно 33,794038815…, 1241/29 равно 33,553590738…, 1299/70 равно 33,594688567… и т.д. Как мы видим, эти дробные степени числа 12 сходятся к некоторому числу — на самом деле к числу 33,588665890…. Поскольку сами дроби при этом сходятся к √2, очень похоже на правду, что 12√2 = 33,588665890….

Итак, задавшись положительным числом x, можно возводить его вообще в любую степень — положительную, отрицательную, дробную или иррациональную. При этом будут выполняться приведенные выше правила действий со степенями, поскольку мы ввели определения таким образом, чтобы именно это и гарантировать! На рисунке 5.1 показаны графики функций xa для различных чисел a в интервале от −2 до 8. Отдельно отметим нулевую степень х0, представляющую собой горизонтальную прямую на высоте 1 над осью x — то, что математики называют «постоянной функцией» (а медсестры в реанимации называют «остановкой»). Для любого аргумента x значение этой функции равно 1. Стоит еще обратить внимание, как быстро возрастают целочисленные степени x2, x3, x8, а также — что имеет более прямую связь с главной темой этой книги — как медленно возрастают дробные положительные степени, такие как x0,5.

Рисунок 5.1. Степенные функции xa для различных чисел a.


III.

Возведение чисел в степени на первый взгляд выглядит похожим на умножение. Умножение сначала представляют как кратное сложение: 12×5 = 12 + 12 + 12 + 12 + 12, затем на следующем уровне сложности объясняется, что такое 12×51/2 где на самом деле содержится кое-что еще, кроме кратного умножения. Похожим образом обстоит дело и с возведением в степень. Определить 125 совсем легко, это кратное умножение: 12×12×12×12×12. Чтобы справиться с , требуются дополнительные объяснения, подобные тем, что предложены в предыдущем разделе.

Как я уже говорил, математики обожают обращать выражения. Скажем, пусть задано выражение величины P через Q. Отлично, давайте посмотрим, можно ли выразить Q через P. И здесь аналогия между умножением и возведением в степень нарушается. Обратить умножение легко: если x = a×b, то a = x:b и b = x:a. Деление полностью решает проблему обращения умножения.

Аналогия нарушается, потому что a×b всегда и без единого исключения равно a×b, но, к сожалению, неверно (за исключением случайных совпадений), что ab = ba (единственный случай, когда это так для целочисленных степеней и не совпадающих a и b — это 24 = 42). Например, 102 есть 100, но 210 есть 1024. Поэтому, если мы собираемся обратить x = ab, то нам понадобятся две разные вещи: способ выразить a через x и b и, отдельно, способ выразить b через x и a. Первое — не проблема. Возведем обе части в степень 1/b и в соответствии с 3-м правилом получим a = x1/b (что согласно 6-му правилу означает, что a есть корень b-й степени из x). Но как же выразить b через x и а? Правила действий со степенями не дают здесь никаких подсказок.

Здесь-то и появляются логарифмы. Ответ таков: b есть логарифм x по основанию a. Это просто-напросто определение логарифма. Логарифм числа x по основанию a (обычно записываемый как loga x) определяется как такое число b, для которого верно равенство x = ab. Это дает целое семейство логарифмических функций: логарифм x по основанию 2, логарифм x по основанию 10 (который более старшие читатели могут припомнить в качестве облегчающего вычисления средства, — его проходили в старших классах школы примерно до 1980 года) и т.д. Можно было бы представить их все в виде графиков, как это сделано для графиков функций х0 на рисунке 5.1.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.