Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Дедекинд, отзывающийся о герое своих записей с неизменной симпатией, далее утверждает, что с годами риманова манера чтения лекций улучшилась. Не исключено, что это правда, но сохранившиеся письма студентов Римана показывают, что даже в 1861 году «его мысли часто подводили его, и он был не в состоянии объяснить простейшие вещи». Отношение к этой проблеме самого Римана было, как всегда, достаточно трогательным. После своей первой лекции, состоявшейся 5 октября 1854 года, он пишет отцу: «Надеюсь, что через полгода мне будет легче с моими лекциями и мысль о них не будет отравлять моего пребывания в Квикборне и нашего с тобой общения, как это случилось в прошлый раз». Он был безнадежно застенчивым человеком.
VII.
Самым крупным событием того осенне-зимнего семестра стала смерть Гаусса 23 февраля 1855 года, в возрасте 77 лет. Он находился в добром здравии до самого конца и умер внезапно, от сердечного приступа, сидя в своем любимом кресле в дорогой его сердцу обсерватории.[73]
Профессорскую должность Гаусса сразу же предложили Дирихле, который принял приглашение и уже через несколько недель прибыл в Геттинген. С учетом того, сколь великодушно Дирихле отнесся к нему в Берлине, а также тесного общения между ними в 1852 году во время приезда Дирихле в Геттинген, Риман должен был воспринять это с воодушевлением. А мозг Гаусса, кстати, был забальзамирован и оставлен на хранение на факультете физиологии Геттингенского университета, где находится и поныне.
Дирихле также был воодушевлен; в Берлине ему приходилось слишком много работать. Насчет воодушевления его жены полной уверенности нет. Привыкнув к берлинскому высшему обществу, Ребекка Дирихле, урожденная Мендельсон, должна была счесть Геттинген тоскливым и провинциальным. Она изо всех сил старалась скрасить свое пребывание там, устраивая балы — Дедекинд упоминает, что на одном из них присутствовало от 60 до 70 человек, — и вечера музыки в берлинском стиле. Сам Дедекинд, будучи человеком и светским, и музыкальным, расцвел в таком окружении. С Риманом, конечно, все обстояло наоборот, и если его другу хотя бы иногда удавалось затащить его на одно из таких мероприятий, то бедному Риману, должно быть, приходилось в муках терпеть, пока оно не закончится.
Куда большую муку он пережил в октябре того же 1855 года, когда умер его отец, а вскоре после того и младшая сестра Клара. Это положило конец лелеемой им связи с Квикборном. Брат Римана занимал должность почтового служащего в Бремене, и три оставшихся сестры Римана, не имея других средств к существованию и даже жилья (после того как должность викария в Квикборне занял новый пастор), переехали жить к брату.
Несчастный Риман должен был быть совершенно опустошен. Он набросился на работу и в 1857 году написал основополагающую статью о теории функций, упоминавшуюся в главе 1, — статью, принесшую ему известность. Но напряженная работа в соединении с горем повлекла за собой нервный срыв. У Дедекиндов был летний домик в горах Гарц в нескольких милях к западу от Геттингена.[74] Дедекинд смог уговорить Римана провести там несколько недель; он сам ненадолго приезжал туда и ходил с Риманом на прогулки.
В ноябре, после возвращения Римана в Геттинген, его назначили доцентом в университете со скромным жалованьем в 300 талеров в год. Но беда не приходит одна. Его брат Вильгельм в тот же месяц скончался в Бремене, а затем, в начале следующего года, умерла его сестра Мария. Семья, которую Риман боготворил и в которой сосредотачивалась вся его эмоциональная жизнь, исчезала у него на глазах. Он перевез двух оставшихся сестер к себе в Геттинген.
Летом 1858 года во время лекции в Швейцарии у Дирихле случился сердечный приступ, и в Геттинген его перевезли с немалым трудом. Пока он лежал тяжелобольным, его жена скоропостижно умерла от удара. Дирихле воссоединился с ней в мае следующего года. (Его мозг составил компанию мозгу Гаусса на факультете физиологии.) Должность Гаусса теперь освободилась.
VIII.
От смерти Гаусса до смерти Дирихле прошло четыре года, два месяца и двенадцать дней. За этот отрезок времени Риман потерял не только двух коллег, которых он ценил более всех других математиков, но и отца, брата, двух сестер и жилище викария в Квикборне — то единственное место на земле, которое было ему домом и прибежищем с самого детства.
В то самое время, как эмоциональная жизнь Римана омрачалась одним ударом за другим, его звезда на математическом небосклоне восходила. К концу 1850-х годов блеск и оригинальность его работ стали известны математикам почти по всей Европе. Болезненно застенчивый молодой студент, лишь за десять лет до того приехавший в университет, чтобы начать работу над своей диссертацией, теперь стал заметным математиком, и о Геттингенском университете, который в начале 1850-х годов слыл прежде всего университетом Гаусса, начали говорить как об университете Гаусса, Дирихле и Римана. (Но не Дедекинда, которому еще предстояло создать свои лучшие работы. Дедекинд, кстати, уехал из Геттингена, получив должность в Цюрихе, осенью 1858 года.)
Не слишком неожиданным поэтому был выбор руководства университета в пользу Римана как второго преемника Гаусса. 30 июля 1859 года он получил должность ординарного профессора, что означало обеспеченное существование, и — видимо, как признание за ним необходимости содержания двух оставшихся в живых сестер — апартаменты Гаусса в обсерватории. Скоро последовали и другие знаки отличия. Первый — 11 августа, когда он был произведен в члены-корреспонденты Берлинской академии наук. Риман вернулся в Берлин спустя немногим более 10 лет после того, как уехал оттуда, но вернулся со скромной коллекцией венков на своем челе и был встречен с почетом теми, чьи имена составляли славу немецкой математики: Куммером, Кронеккером, Вейерштрассом, Борхардом.
Венцом триумфа Римана стало представление им на суд академии своей работы «О числе простых чисел, не превышающих данной величины». В ее первой фразе он благодарит двух людей, к этому моменту уже покойных, помощь которых (хотя и предоставившаяся намного более охотно со стороны Дирихле, чем со стороны Гаусса) позволила ему покорить высоты. Во второй фразе он демонстрирует Золотой Ключ. В третьей присваивает имя дзета-функции. Первые три предложения работы Римана 1859 года в действительности таковы:
За внимание, которое Академия выказала в мой адрес, приняв меня в качестве одного из своих членов-корреспондентов, более всего, как мне представляется, я мог бы высказать благодарность, незамедлительно воспользовавшись таким образом полученными мною привилегиями представить сообщение об исследовании частоты появления простых чисел; несмотря на длительный интерес к этому предмету со стороны и Гаусса, и Дирихле, сообщение по этому поводу представляется не лишенным некоторого интереса.
В качестве отправной точки моего исследования я исхожу из наблюдения Эйлера о выражении произведения
где p — все простые, a n — все целые числа. Функцию комплексной переменной s, которая задается каждым из этих выражений, коль скоро они сходятся, я обозначу как ζ(s).
Гипотеза Римана, появляющаяся на четвертой странице той работы, утверждает некий факт о дзета-функции. Чтобы продвинуться в понимании Гипотезы, нам предстоит теперь более серьезно углубиться в устройство дзета-функции.
Глава 9. Расширение области определения
Итак, мы начинаем приближаться к Гипотезе Римана. Просто чтобы освежить память, сформулируем ее еще раз:
Гипотеза РиманаВсе нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.
И мы уже знаем, что такое дзета-функция! Если s — некоторое число, большее единицы, то дзета-функция определяется таким выражением (9.1):
или же, несколько более изысканным образом,
где слагаемые бесконечного ряда отвечают всем положительным целым числам. Мы видели, что если к этой сумме применить процедуру, напоминающую решето Эратосфена, то ее можно переписать как
то есть
где множители в бесконечном произведении отвечают всем простым числам.
Таким образом, получаем
что я и назвал Золотым Ключом.
Пока все прекрасно, но что это там говорилось насчет нетривиальных нулей? Что такое нуль функции? Что представляют собой нули дзета-функции? И когда они нетривиальны? Не переживайте, сейчас все будет!
II.
Позабудем на время о дзета-функции. Рассмотрим бесконечную сумму совсем другого типа:
S(x) = 1 + x + x2 + x3 + x4 + x5 + x6 + ….
Сходится ли она вообще когда-нибудь? Без сомнения. Если x равно 1/2,то сумма представляет собой просто-напросто выражение 1.1 из главы 1.iv, поскольку (1/2)2 = 1/4, (1/2)3 = 1/8 и т.д. Следовательно, S(1/2) = 2, потому что именно к этому значению ряд и сходится. Более того, если вспомнить правило знаков, то (−1/2)2 = 1/4, (−1/2)3 = −1/8 и т.д., а следовательно, S(−1/2) = 2/3 согласно выражению 1.2 из главы 1.v. Аналогичным образом выражение 1.3 говорит нам, что S(1/3) = 11/2 выражение 1.4 — что S(−1/3) = 13/4. Легко получить и еще одно значение для этой функции: S(0) = 1, поскольку нуль в квадрате, кубе и т.д. все равно равен нулю, и остается только единица, с которой ряд начинается.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.



























