» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Дедекинд, отзывающийся о герое своих записей с неизменной симпатией, далее утверждает, что с годами риманова манера чтения лекций улучшилась. Не исключено, что это правда, но сохранившиеся письма студентов Римана показывают, что даже в 1861 году «его мысли часто подводили его, и он был не в состоянии объяснить простейшие вещи». Отношение к этой проблеме самого Римана было, как всегда, достаточно трогательным. После своей первой лекции, состоявшейся 5 октября 1854 года, он пишет отцу: «Надеюсь, что через полгода мне будет легче с моими лекциями и мысль о них не будет отравлять моего пребывания в Квикборне и нашего с тобой общения, как это случилось в прошлый раз». Он был безнадежно застенчивым человеком.


VII.

Самым крупным событием того осенне-зимнего семестра стала смерть Гаусса 23 февраля 1855 года, в возрасте 77 лет. Он находился в добром здравии до самого конца и умер внезапно, от сердечного приступа, сидя в своем любимом кресле в дорогой его сердцу обсерватории.[73]

Профессорскую должность Гаусса сразу же предложили Дирихле, который принял приглашение и уже через несколько недель прибыл в Геттинген. С учетом того, сколь великодушно Дирихле отнесся к нему в Берлине, а также тесного общения между ними в 1852 году во время приезда Дирихле в Геттинген, Риман должен был воспринять это с воодушевлением. А мозг Гаусса, кстати, был забальзамирован и оставлен на хранение на факультете физиологии Геттингенского университета, где находится и поныне.

Дирихле также был воодушевлен; в Берлине ему приходилось слишком много работать. Насчет воодушевления его жены полной уверенности нет. Привыкнув к берлинскому высшему обществу, Ребекка Дирихле, урожденная Мендельсон, должна была счесть Геттинген тоскливым и провинциальным. Она изо всех сил старалась скрасить свое пребывание там, устраивая балы — Дедекинд упоминает, что на одном из них присутствовало от 60 до 70 человек, — и вечера музыки в берлинском стиле. Сам Дедекинд, будучи человеком и светским, и музыкальным, расцвел в таком окружении. С Риманом, конечно, все обстояло наоборот, и если его другу хотя бы иногда удавалось затащить его на одно из таких мероприятий, то бедному Риману, должно быть, приходилось в муках терпеть, пока оно не закончится.

Куда большую муку он пережил в октябре того же 1855 года, когда умер его отец, а вскоре после того и младшая сестра Клара. Это положило конец лелеемой им связи с Квикборном. Брат Римана занимал должность почтового служащего в Бремене, и три оставшихся сестры Римана, не имея других средств к существованию и даже жилья (после того как должность викария в Квикборне занял новый пастор), переехали жить к брату.

Несчастный Риман должен был быть совершенно опустошен. Он набросился на работу и в 1857 году написал основополагающую статью о теории функций, упоминавшуюся в главе 1, — статью, принесшую ему известность. Но напряженная работа в соединении с горем повлекла за собой нервный срыв. У Дедекиндов был летний домик в горах Гарц в нескольких милях к западу от Геттингена.[74] Дедекинд смог уговорить Римана провести там несколько недель; он сам ненадолго приезжал туда и ходил с Риманом на прогулки.

В ноябре, после возвращения Римана в Геттинген, его назначили доцентом в университете со скромным жалованьем в 300 талеров в год. Но беда не приходит одна. Его брат Вильгельм в тот же месяц скончался в Бремене, а затем, в начале следующего года, умерла его сестра Мария. Семья, которую Риман боготворил и в которой сосредотачивалась вся его эмоциональная жизнь, исчезала у него на глазах. Он перевез двух оставшихся сестер к себе в Геттинген.

Летом 1858 года во время лекции в Швейцарии у Дирихле случился сердечный приступ, и в Геттинген его перевезли с немалым трудом. Пока он лежал тяжелобольным, его жена скоропостижно умерла от удара. Дирихле воссоединился с ней в мае следующего года. (Его мозг составил компанию мозгу Гаусса на факультете физиологии.) Должность Гаусса теперь освободилась.


VIII.

От смерти Гаусса до смерти Дирихле прошло четыре года, два месяца и двенадцать дней. За этот отрезок времени Риман потерял не только двух коллег, которых он ценил более всех других математиков, но и отца, брата, двух сестер и жилище викария в Квикборне — то единственное место на земле, которое было ему домом и прибежищем с самого детства.

В то самое время, как эмоциональная жизнь Римана омрачалась одним ударом за другим, его звезда на математическом небосклоне восходила. К концу 1850-х годов блеск и оригинальность его работ стали известны математикам почти по всей Европе. Болезненно застенчивый молодой студент, лишь за десять лет до того приехавший в университет, чтобы начать работу над своей диссертацией, теперь стал заметным математиком, и о Геттингенском университете, который в начале 1850-х годов слыл прежде всего университетом Гаусса, начали говорить как об университете Гаусса, Дирихле и Римана. (Но не Дедекинда, которому еще предстояло создать свои лучшие работы. Дедекинд, кстати, уехал из Геттингена, получив должность в Цюрихе, осенью 1858 года.)

Не слишком неожиданным поэтому был выбор руководства университета в пользу Римана как второго преемника Гаусса. 30 июля 1859 года он получил должность ординарного профессора, что означало обеспеченное существование, и — видимо, как признание за ним необходимости содержания двух оставшихся в живых сестер — апартаменты Гаусса в обсерватории. Скоро последовали и другие знаки отличия. Первый — 11 августа, когда он был произведен в члены-корреспонденты Берлинской академии наук. Риман вернулся в Берлин спустя немногим более 10 лет после того, как уехал оттуда, но вернулся со скромной коллекцией венков на своем челе и был встречен с почетом теми, чьи имена составляли славу немецкой математики: Куммером, Кронеккером, Вейерштрассом, Борхардом.

Венцом триумфа Римана стало представление им на суд академии своей работы «О числе простых чисел, не превышающих данной величины». В ее первой фразе он благодарит двух людей, к этому моменту уже покойных, помощь которых (хотя и предоставившаяся намного более охотно со стороны Дирихле, чем со стороны Гаусса) позволила ему покорить высоты. Во второй фразе он демонстрирует Золотой Ключ. В третьей присваивает имя дзета-функции. Первые три предложения работы Римана 1859 года в действительности таковы:

За внимание, которое Академия выказала в мой адрес, приняв меня в качестве одного из своих членов-корреспондентов, более всего, как мне представляется, я мог бы высказать благодарность, незамедлительно воспользовавшись таким образом полученными мною привилегиями представить сообщение об исследовании частоты появления простых чисел; несмотря на длительный интерес к этому предмету со стороны и Гаусса, и Дирихле, сообщение по этому поводу представляется не лишенным некоторого интереса.

В качестве отправной точки моего исследования я исхожу из наблюдения Эйлера о выражении произведения

где p — все простые, a n — все целые числа. Функцию комплексной переменной s, которая задается каждым из этих выражений, коль скоро они сходятся, я обозначу как ζ(s).

Гипотеза Римана, появляющаяся на четвертой странице той работы, утверждает некий факт о дзета-функции. Чтобы продвинуться в понимании Гипотезы, нам предстоит теперь более серьезно углубиться в устройство дзета-функции.

Глава 9. Расширение области определения

I.

Итак, мы начинаем приближаться к Гипотезе Римана. Просто чтобы освежить память, сформулируем ее еще раз:

Гипотеза Римана

Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.

И мы уже знаем, что такое дзета-функция! Если s — некоторое число, большее единицы, то дзета-функция определяется таким выражением (9.1):

или же, несколько более изысканным образом,

где слагаемые бесконечного ряда отвечают всем положительным целым числам. Мы видели, что если к этой сумме применить процедуру, напоминающую решето Эратосфена, то ее можно переписать как

то есть

где множители в бесконечном произведении отвечают всем простым числам.

Таким образом, получаем

что я и назвал Золотым Ключом.

Пока все прекрасно, но что это там говорилось насчет нетривиальных нулей? Что такое нуль функции? Что представляют собой нули дзета-функции? И когда они нетривиальны? Не переживайте, сейчас все будет!


II.

Позабудем на время о дзета-функции. Рассмотрим бесконечную сумму совсем другого типа:

S(x) = 1 + x + x2 + x3 + x4 + x5 + x6 + ….

Сходится ли она вообще когда-нибудь? Без сомнения. Если x равно 1/2,то сумма представляет собой просто-напросто выражение 1.1 из главы 1.iv, поскольку (1/2)2 = 1/4, (1/2)3 = 1/8 и т.д. Следовательно, S(1/2) = 2, потому что именно к этому значению ряд и сходится. Более того, если вспомнить правило знаков, то (−1/2)2 = 1/4, (−1/2)3 = −1/8 и т.д., а следовательно, S(−1/2) = 2/3 согласно выражению 1.2 из главы 1.v. Аналогичным образом выражение 1.3 говорит нам, что S(1/3) = 11/2 выражение 1.4 — что S(−1/3) = 13/4. Легко получить и еще одно значение для этой функции: S(0) = 1, поскольку нуль в квадрате, кубе и т.д. все равно равен нулю, и остается только единица, с которой ряд начинается.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.