Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Вглядевшись очень внимательно в выражение (19.1), мы увидим следующую закономерность. Во-первых, когда x — простое число, функция J(x) совершает прыжок на высоту 1, потому что π(x) — число простых чисел, не превышающих x, — при этом увеличивается на 1. Во-вторых, когда x является точным квадратом простого числа (например, x = 9, что есть квадрат числа 3), J(x) совершает прыжок на одну вторую, потому что квадратный корень из x есть простое число, а значит, π(√x) возрастает на 1. В-третьих, когда x есть точный куб простого числа (например, x = 8, что есть куб числа 2), J(x) совершает прыжок на одну треть, потому что кубичный корень из x равен простому числу, а значит, π(3√x) возрастает на 1, и т.д.
Попутно заметим, что функция J обладает тем же свойством, которым мы снабдили функцию π(x): в точке, где реально происходит прыжок, она принимает значение, лежащее посередине между теми значениями, от которого и до которого она прыгает.
Для полноты представления функции J на рисунке 19.3 изображен график J(x) при аргументах до 100. Самый маленький прыжок здесь совершается при x = 64 — это число представляет собой шестую степень (64 = 26), так что функция J прыгает при x = 64 на одну шестую.
Рисунок 19.3. Еще о функции J(x).
Какую пользу может принести подобная функция? Терпение, терпение. Сначала придется совершить один из тех логических скачков, о которых я предупреждал в начале главы.
IV.
Напоминаю в который уже раз, что у математиков есть масса способов обращать соотношения. Дали нам выражение для P через Q — отлично, посмотрим, не найдется ли способа выразить Q через P. В течение столетий в математике был развит целый инструментарий для того, чтобы совершать обращения, — он включает набор приемов для использования в самых разных условиях и обстоятельствах. Один из таких приемов носит название мебиусова обращения, и оно-то нам сейчас и нужно.
Не буду пытаться объяснить мебиусово обращение в общем виде. Оно описано в любом хорошем учебнике по теории чисел (см., например, раздел 16.4 в классической монографии «Теория чисел» Харди и Райта), а кроме того, поиск в Интернете наведет вас на множество ссылок. Подражая до некоторой степени самим функциям π и J, я вместо того, чтобы уныло тащиться от одной точки в моих рассуждениях к другой, перескочу сразу к следующему факту: применение мебиусова обращения к выражению (19.1) дает такой результат:
π(x) = J(x) − 1/2J(√x) − 1/3J(3√x) − 1/5J(5√x) + 1/6J(6√x) − 1/7J(7√x) + 1/10J(10√x) + …. (19.2)
Можно заметить, что некоторые члены (четвертый, восьмой, девятый) здесь отсутствуют. А из тех, что присутствуют, некоторые (первый, шестой, десятый) входят со знаком плюс, тогда как другие (второй, третий, пятый, седьмой) — со знаком минус. Ничего не напоминает? Здесь спрятана функция Мебиуса из главы 15. На самом деле
(где 1√x как и в других местах в книге, есть, конечно, просто x). Почему, как вам теперь кажется, это назвали мебиусовым обращением?
Итак, мы записали функцию π(x), выразив ее через J(x). Это чудесно, потому что Риман нашел способ, как выразить J(x) через ζ(x).
Прежде чем расстаться с выражением (19.2), надо еще упомянуть, что, подобно выражению (19.1), это не бесконечная сумма, а конечная. Это происходит из-за того, что функция J, как и функция π, равна нулю, когда x меньше 2 (взгляните на график!), а если последовательно извлекать корни из какого-нибудь числа, то результат рано или поздно упадет ниже 2 и там останется. Например,
π(100) = J(100) − 1/2J(10) − 1/3J(4,64…) − 1/5J(2,51…) + 1/6J(2,15…) − 0 + 0 + … = 288/15 − 22/3 − 5/6 − 1/5 + 1/6,
что дает в точности число 25, которое и в самом деле является числом простых чисел меньших 100. Волшебство.
А теперь повернем Золотой Ключ.
V.
Вот Золотой Ключ, первое равенство в статье Римана 1859 года, полученное нами в главе 7, когда я убеждал вас, что это просто хитрый способ переписать решето Эратосфена:
He будем забывать, что числа, появляющиеся в правой части, — это в точности все простые числа.
Возьмем логарифм от обеих частей. Если что-то равно чему-то, то, конечно, и логарифм одного должен быть равен логарифму другого. Согласно 9-му правилу действий со степенями, которое гласит, что ln(a×b) = ln а + ln b, получаем
Но, поскольку ln 1/a = −ln a согласно 10-му правилу, это выражение равно
Теперь вспомним ряд сэра Исаака Ньютона для функции ln (1 − x) из главы 9.vii. Он пригоден при x, лежащем от −1 до +1, что, без сомнения, выполнено в нашем случае, поскольку s положительно. Поэтому каждый логарифм можно разложить в бесконечный ряд таким образом (19.3):
Это бесконечная сумма бесконечных сумм — с первого взгляда, я полагаю, подобное немного пугает, но в математике такие конструкции встречаются достаточно часто.
Сейчас может показаться, что мы оказались в ситуации, которая много хуже той, что была вначале. Аккуратненькое бесконечное произведение мы превратили в бесконечную сумму бесконечных сумм. Предприятие может показаться безнадежным. Да, но это если не использовать всю мощь анализа.
VI.
Возьмем какой-нибудь один из членов в этой сумме сумм. Выберем, например, . Рассмотрим функцию x−s−1 и будем временно считать, что s — положительное число. Каков интеграл от x−s−1? В силу общих правил обращения со степенями, приведенных в главе 7.vii, это x−s/(−s), т.е. (−1/s)×(1/xs). Если мы возьмем этот интеграл при x, равном бесконечности, и вычтем из того, что получится, тот же интеграл, взятый при x равном 32,то что получится? Ну, если x — очень большое число, то (−1/s)×(1/xs) — число очень маленькое, так что справедливо будет считать, что, когда x бесконечно велико, это выражение равно нулю. И из этого — из нуля — мы собираемся вычесть (−1/s)×(1/(32)s). Такое вычитание дает (1/s)×(1/(32)s). Сухой остаток таков: выбранный член в выражении (19.3) можно переписать в виде интеграла
Но зачем мы вообще все это делаем? Чтобы вернуться к функции J, вот зачем.
Дело в том, что x = 32 — это значение, при котором функция J совершает прыжок на 1/2. В голове у математика — и уж точно в голове у великого математика, каким был Риман, — приведенное выражение сразу вызывает некоторый образ. Этот образ представлен на рисунке 19.4: это функция J с заполненной полосой. Полоса тянется от 32 (т.е. от 9) до бесконечности и имеет высоту одна вторая. Ясно, что вся площадь под (говорим «площадь под» — думаем «интеграл») графиком функции J составлена из подобных же полосок. Полоски высотой 1, протянувшиеся от каждого простого числа до бесконечности; полоски высотой одна вторая, идущие от каждого квадрата простого числа до бесконечности; полоски высотой одна треть от каждого куба простого числа до бесконечности… Видите, как все срастается с той бесконечной суммой бесконечных сумм в выражении (19.3)?
Рисунок 19.4. .
Конечно, площадь под графиком функции J бесконечна. Нарисованная полоска уже имеет бесконечную площадь (высота 1/2, длина бесконечна, площадь 1/2×∞ = ∞). Таковы же площади и всех других полосок. Все вместе они складываются в бесконечность. Но что, если я пожелаю «придавить» функцию J справа таким образом, чтобы площадь под графиком стала конечной? Так, чтобы каждая из этих полосок постепенно сужалась и сжималась до такой степени, чтобы площадь ее стала конечной? Как можно было бы осуществить такое «придавливание»?
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.



























