» » » » Генри Дьюдени - Пятьсот двадцать головоломок


Авторские права

Генри Дьюдени - Пятьсот двадцать головоломок

Здесь можно скачать бесплатно "Генри Дьюдени - Пятьсот двадцать головоломок" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1975. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Генри Дьюдени - Пятьсот двадцать головоломок
Рейтинг:
Название:
Пятьсот двадцать головоломок
Издательство:
Мир
Год:
1975
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Пятьсот двадцать головоломок"

Описание и краткое содержание "Пятьсот двадцать головоломок" читать бесплатно онлайн.



Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.

В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.

Книга доставит удовольствие всем любителям занимательной математики.






144. Полностью восстановленный пример выглядит так:

Три нуля внизу показывают, что последнее четырехзначное число делится как на 625, так и на 1000. Следовательно, оно разлагается в произведение следующих множителей: 5, 5, 5, 2, 2, 2, x, где x — число, которое меньше 10. У трехзначного делителя по крайней мере один из составляющих его множителей должен равняться 5. Следовательно, последняя цифра делителя равна 5 или 0. Вычитание из единственного нуля незадолго до конца показывает, что она равна 5. Отсюда мы сразу получаем последнее число: 5000. Делитель не содержит 2 (иначе он не оканчивался бы на 5); следовательно, последняя цифра частного должна равняться 8 (2 × 2 × 2), делитель равен 625, а x представляет собой четвертую пятерку. Остальное делается совсем просто.

145. Ответ:

Если первое число разбить на пары (45, 39 и т. д.), то их можно переставлять в любом порядке, лишь бы пара 06 не стояла в начале, а пара 45 — в конце.

146. Довольно легко обнаружить, что делитель должен равняться 312, а в частном не может содержаться девятка, поскольку делитель, умноженный на 9, даст повторяющиеся цифры. Таким образ.ом, известно, что частное содержит все цифры от 1 до 8 по одному разу. Остальное уже сравнительно легко сделать. Мы обнаружим, что имеется четыре возможных случая и что только в одном из них отсутствует повторение цифр, а именно:

[Возможно и другое решение:

147. Приводим ответ:

Если читатель проделает указанные действия, то обнаружит, что все условия головоломки выполнены.

148. Разделив 4 971 636 104 на 124 972, мы получим 39 782. Читатель может сам произвести деление и убедиться, что все условия выполнены. Если мы разрешим ввести дополнительные семерки в делимое, то ответ будет иметь вид

[Возможны еще три решения:

149. Первый пример на деление имеет вид

а второй

150. Ответ имеет вид

Ясно, что R не может быть равным 1; следовательно, оно должно равняться 5 или 6 для того, чтобы во второй строке появилось R. Далее, цифра D должна быть нулем, чтобы в пятой строке получилось V . Точно так же как M должно быть 1, 2, 3 или 4, если R равно 5, но может быть и 5, если R равно 6. Цифра S должна быть четным числом, если R равно 5, чтобы D равнялось 0, а если R равно 6, то 5 должно равняться 5. Выяснив все эти факты, мы уже легко получим ответ с помощью небольшого числа проб.

151.

152. 6543 × 98 271 = 642 987 153.

153. Единственное слово (а не бессмысленный набор букв), удовлетворяющее заданным условиям, — это ПОДСВЕЧНИК. Сумма расшифровывается следующим образом:

154. Ключ к коду имеет вид

1234567890 АТQВKXSWEP

откуда мы получаем

a BEESWAX означает число 4 997 816.

155.

156.

157.

158. Очевидно, что A равно 1, а B и C обозначают либо 6 и 2, либо 3 и 5. Из третьего уравнения видно, что они равны 3 и 5, поскольку D должно равняться 7. Буква E равна 8, так как в произведении D × E появляется C = 5. Остальное закончить совсем легко, и мы получаем следующий ответ:

159. Из зерна крестьянина должно было получиться 1 мешка муки, что после уплаты всей муки как раз и даст ровно один мешок.

160. Ответ задачи: полкурицы плюс полкурицы, то есть одна курица. Если полторы курицы несут полтора яйца за полтора дня, то одна курица несет по одному яйцу за полтора дня. Курица, которая несется лучше в полтора раза, несет полтора яйца за полтора дня, или по яйцу а день. Поэтому она снесет 10½ яиц (десяток яиц с половиной) за 10½ дня (полторы недели).

161. У Адама было 60 овец, у Бена 50, у Клода 40 и у Дана 30. После всех перераспределений у каждого оказалось по 45 овец.

162. Наименьшее возможное количество яиц равно 103, а женщина ежедневно продавала по 60 штук. Любые кратные этих чисел можно использовать в качестве ответа на вопрос задачи. Например, женщина могла привезти 206 яиц и продавать по 120 штук или привезти 309 яиц и продавать по 180. Поскольку требовалось найти наименьшее число, то ответ единствен.

163. Нужно просто разделить данное число на 8. Если оно разделится нацело, без остатка, то мышка — во второй бочке. Если остаток будет равен 1, 2, 3, 4 или 5, то номер бочки совпадет с этим остатком. Если остаток получится .больше 5, то его нужно вычесть из 10. Полученная разность равна номеру бочки. Число 500 при делении на 8 дает в остатке 4, так что на искомой бочке изображена цифра 4.

164. Пять бригад насчитывают соответственно по 5670, 6615, 3240, 2730 и 2772 человека. После приведения всех дробей к общему знаменателю (12 012) числители станут равны соответственно 4004, 3432, 7007, 8316 и 8190. Комбинируя все различные делители, содержащиеся в этих числах, мы получаем 7 567 560, что при делении на каждое из чисел даст соответственно 1890, 2205, 1080, 910 и 924. Поскольку в условии говорится, что соединение насчитывает «немногим более 20 тыс. человек», мы умножаем полученные числа на 3, что и дает правильную общую численность в 21 027 человек.

165. Всего голосовавших было 207. Сперва 115 избирателей проголосовало «за» и 92 «против», причем большинство составило 23 голоса, что как раз и равно одной четверти от 92. Но когда 12 человек, для которых не нашлось стульев, присоединились к оппозиции, оказалось, что «за» подано 103, а «против» — 104 голоса. Так что победили противники забастовки большинством в один голос.

166. Артур может выполнить всю работу за 14) Бенджамин — за 17 и Чарлз — за 23 дня.

167. Сумма номеров тех домов, которые расположены по одну сторону от данного, совпадет с суммой номеров по другую сторону от него в следующих случаях: 1) если номер данного дома равен 1 и других домов вообще нет; 2) если номер равен 6 и всего имеется 8 домов; 3) если номер равен 35, а всего домов 49; 4) если номер дома 204, а всего домов 288; 5) если номер дома 1189, а всего домов 1681 и т. д. Однако нам известно, что число домов больше 50 и меньше 500; следовательно, искомый номер равен 204.

Решив уравнение (x2 + x)/2 = y2 в целых числах, получим ответы:

ЧислоНомер домов xдома y 11 86 4935 288204 16811189

и т. д.

168. Номер дома Брауна 84, а всего на улице 119 домов. Сумма чисел от 1 до 84 равна 3570, а сумма чисел от 1 до 119 составит 7140, что, как и требовалось, ровно в 2 раза больше.

Выпишем последовательные решения (в целых числах) уравнения 2x2 - 1 = y2:

xy 11 57 2941 169239 9851393

и т. д. Тогда целая часть[37] x/2 даст нам номер дома, а целая часть y/2 — общее число домов. Так (опуская тривиальный случай 0—0), мы получаем 2—3, 14—20, 84—119, 492—696 и т.д.

169. На нечетной стороне улицы номер дома равен 239, а всего на ней расположено 169 домов. На четной стороне улицы номер дома равен 408, а всего на ней расположено 288 домов.

В первом случае мы ищем решение в целых числах уравнения 2x2 - 1 = y2. Получаем следующие ответы:

ЧислоНомер домов xдома y 11 57 2941 169239 9851393

и т. д.

Во втором случае мы ищем решение в целых числах уравнения 2(x2 + x) = y2. Получаем следующее:

ЧислоНомер домов xдома y 12 812 4970 288408 16812378

и т. д.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Пятьсот двадцать головоломок"

Книги похожие на "Пятьсот двадцать головоломок" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Генри Дьюдени

Генри Дьюдени - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Генри Дьюдени - Пятьсот двадцать головоломок"

Отзывы читателей о книге "Пятьсот двадцать головоломок", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.