» » » Жак Арсак - Программирование игр и головоломок


Авторские права

Жак Арсак - Программирование игр и головоломок

Здесь можно скачать бесплатно "Жак Арсак - Программирование игр и головоломок" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство Наука. Гл. ред. физ.-мат. лит., год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Жак Арсак - Программирование игр и головоломок
Рейтинг:
Название:
Программирование игр и головоломок
Автор:
Издательство:
Наука. Гл. ред. физ.-мат. лит.
Год:
1990
ISBN:
5-02-013959-9
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Программирование игр и головоломок"

Описание и краткое содержание "Программирование игр и головоломок" читать бесплатно онлайн.



Рассматриваются способы программирования различных занимательных игр и головоломок с числами, геометрическими фигурами и др. Изложение большинства игр и головоломок ведется в несколько этапов. Сначала разъясняется сама постановка задачи и требования, предъявляемые к алгоритму ее решения.

В следующем разделе книги обсуждается сам алгоритм и возможные пути его реализации.

В конце книга по многим играм и головоломкам даются наброски их программной реализации. Используемый при этом язык типа Паскаля допускает перевод на другие широко распространенные языки программирования.

Для начинающих программистов, студентов вузов и техникумов.






Игра 30.

Единственная настоящая задача, если вы работаете итеративным способом — организовать испытания так, чтобы иметь возможность совершенно систематически проводить их и обновлять игру, сохраняя список ходов, чтобы иметь возможность вернуться назад.

Игра имеет ту же конфигурацию, что и для лис и кур. Поле обозначается своим положением в цепочке. Перемещение в данном направлении реализуется добавлением некоторой константы к данному положению. Таблица из четырех элементов дает эти константы для всех четырех направлений. Свободное поле представляется точкой, занятое поле — крестиком ×.

Вы ищете первый крестик в цепочке и вы начинаете с первого возможного перемещения i = 1. Если есть возможность взятия в этом направлении, то вы регистрируете данные ×, i в цепочке или таблице (во втором случае вы симулируете кучу). Вы выполняете взятие и начинаете сначала. Если же возможности взятия в данном направлении нет, то вы переходите к следующему i. Если вы достигаете четырех, то с этим крестиком все кончено, и вы переходите к следующему. Если их больше нет, то вы возвращаетесь к последней зарегистрированной в куче паре данных ×, i, отменяете соответствующее взятие (изменение состояния игры) и продолжаете переходом к следующему i.

Вы уже проделали более трудную работу для самого длинного взятия в игре с курами и лисами.

Игра 31.

Число ходов f(р) для переноса р дисков получается переносом сначала p − 1 дисков со стержня d на стержень 3 − аd за f(р − 1) ход, затем из перемещения диска р, что требует в точности одного хода, а затем возвращения р − 1 дисков из запаса на стержень прибытия за f(р − 1) ход, откуда получаем:

f(р) = 2 * f(р − 1) + 1,

g(p) = f(p) + 1 = 2 * f(р − 1) + 2 = 2 * (f(p − 1) + 1) − 2 * g(р − 1).

По индукции g(р) = 2pg(0).

Так как f(0) = 0, g(0) = f(0) + 1 = 1, g(р) = 2p, то, наконец

f(р) = 2p − 1.

Для игры с 50 дисками нужно 250 − 1 ходов. Но 210 равно 1024, или порядка 103. Следовательно, 250 порядка 1015.

В часе 3600 секунд, в сутках 3600 × 24 = 86400 секунд, за год получаем 86400 × 365 — или порядка 3 × 107 секунд, откуда, наконец, 3 × 109 секунд за столетие. Поэтому нужно порядка 1015/3 × 109, или порядка 3 × 105 веков для игры с 50 дисками, которая, таким образом, требует около 300000 веков…

Вот другой способ доказывать свойство четности. Пусть диски обозначены их порядковыми номерами, начиная с первого — самого маленького, и нужно показать, что два диска с номерами одной четности никогда не попадают непосредственно один на другой.

Опыт показывает, что для первых значений n реализация игры Н(n, d, а) дает следующее;

— диски, попадающие в основание стержней d и а, имеют ту же четность, что и n,

— диски, попадающие в основание запасного стержня, имеют другую четность.

Предположим, что это свойство справедливо для n − 1. Для реализации Н(n, d, а) нужно выполнить сначала Н(n − 1, d, 3 − аd). В течение этой операции диск n остается в основании начального стержня d и, следовательно, в основании диска d находится диск n и потому диск той же четности, что и n. Диски, которые при этом оказываются в основании стержня прибытия для процедуры Н(n − 1, d, 3 − аd), имеют (по предположению индукции) ту же четность, что и n − 1. Но этот стержень прибытия является для игры Н(n, d, а) запасным стержнем, и, следовательно, в основании запасного стержня оказываются диски, имеющие ту же четность, что и n − 1. Наконец, запасной стержень для игры Н(n − 1, d, 3 − аd) есть а, в основание которого попадают диски с четностью n − 2, следовательно, с четностью n.

Перемещение диска n со стержня d на стержень а помещает n в основание стержня а, так что при этом свойство четности для а подтверждается. Проверьте, что для стержней d и 3 − аd оно также подтверждается. Для этого разложите Н (n, d, а) на 5 операций:

Н (n − 2, d, а) n и n − 1 на стержне d

Р (n − 1, d, 3 − аd) n на d, n − 1 на 3 − аd

Н (n − 2, а, 3 − аd)

Р (n, d, а) n на а, n − 1 на 3 − аd

Н (n − 2, 3 − ad, d)

Р (n − 1, 3 − аd, а) n на а, n − 1 на а

Н (n − 2, d, а).

Предположим, что искомое свойство четности выполняется для n − 1. Тогда остается заниматься только теми дисками, которые ложатся на диск n.

В первой операции диск n − 1 находится на диске n, они разной четности, и, таким образом, здесь свойство четности выполняется. Во время игры Н(n − 2, а, 3 − аd) диск n находится на стержне, который для этой игры является запасным. Диски, которые в этой игре ложатся в основание этого стержня — и потому ложатся на диск n — имеют четность, противоположную четности числа n − 2, следовательно, четность, противоположную четности n, что и проверяет на этом этапе наше условие четности. Вы легко завершите это рассуждение.

Разобранный пример хорошо иллюстрирует тесную связь между рекурсивностью и рекуррентностью, которые представляют собою не что иное, как две немного отличающиеся реализации одного и того же рассуждения.

Игра 33.

Предположите, что в Н (n − 1, d, а) диск 1 перемещается всегда в одном и том же направлении. Для Н (n, d, а) вы должны выполнить

Н (n − 1, d, 3 − аd)

Н (n − 1, 3 − аd, а).

Вместо того, чтобы непосредственно переходить от d к а, вы осуществляете этот переход с помощью стержня 3 − аd, иначе говоря, вы делаете два перемещения в обратном направлении. Диск 1 продолжает перемещаться всегда в одном и том же направлении, но это направление меняется при переходе от n − 1 к n. Для n = 1 этот диск перемещается в направлении от d к а. Это всегда будет так для всех нечетных n, в то время как для четных n он будет перемещаться в направлении от а к d.

Простое итеративное решение имеет следующий вид: исходя ив четности n определите направление перемещения диска 1. Начните с 2n − 1 число ходов, которые осталось сделать:

s := ЕСЛИ четно (n) ТО 2 ИНАЧЕ 1 КОНЕЦ_ЕСЛИ

d := 0; k:= 2n − 1

ВЫПОЛНЯТЬ

  а := d + s; ЕСЛИ a > 2 ТО а := а − 8

  КОНЕЦ_ЕСЛИ

  переместить диск 1 с d на а;

  d : = a; k := k − 1

  ЕСЛИ k = 0 TO КОНЧЕНО КОНЕЦ_ЕСЛИ

  переместить единственный диск, который можно переместить, кроме диска 1

k := k − 1

ВЕРНУТЬСЯ

Все диски имеют общее свойство: нечетные диски перемещаются в том же направлении, что и диск 1, а четные диски — в другом направлении.

В вышеприведенной программе стратегия совершенна с точки зрения исполнения вручную, потому что в каждый данный момент сразу видно, какой диск нужно переместить, если это не самый маленький диск (меньший из двух остальных дисков перемещается на больший). В нашей программе вам нужно вычислить это движение. Один из наиболее простых способов состоит в том, чтобы представить игру с помощью вектора, дающего для диска i номер стержня, на котором он находится. Диск, подлежащий перемещению — это наименьший Диск, который находится не на том же стержне, что и диск 1, следовательно, номер стержня которого отличается от d. Этот самый диск перемещается со стержня, на котором он находится — с номером x — на стержень 3 − xd.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Программирование игр и головоломок"

Книги похожие на "Программирование игр и головоломок" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Жак Арсак

Жак Арсак - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Жак Арсак - Программирование игр и головоломок"

Отзывы читателей о книге "Программирование игр и головоломок", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.