» » » Марк Волынский - Необыкновенная жизнь обыкновенной капли


Авторские права

Марк Волынский - Необыкновенная жизнь обыкновенной капли

Здесь можно скачать бесплатно "Марк Волынский - Необыкновенная жизнь обыкновенной капли" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Издательство «Знание», год 1986. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Необыкновенная жизнь обыкновенной капли
Издательство:
Издательство «Знание»
Жанр:
Год:
1986
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Необыкновенная жизнь обыкновенной капли"

Описание и краткое содержание "Необыкновенная жизнь обыкновенной капли" читать бесплатно онлайн.








 P = Gwc    (7)


Здесь Р — тяга двигателя; в правой части уравне­ния — количество движения газов, вылетающих из сопла (G — массовый расход газов, — их скорость на срезе сопла).

Формула (7) показывает: конструктор имеет два ре­сурса для увеличения тяги — расход G и скорость вытекающего вещества. Но топливо и так составляет львиную долю массы всей ракеты, выше определенного запаса его не возьмешь. Вот почему поток газов в сопле (где тепловая энергия переходит в кинетическую) раз­гоняют до огромных скоростей, в несколько раз пре­вышающих скорость звука.

Четыре основных уравнения сохранения только в первом приближении — в идеальном случае установив­шегося течения невязкой, несжимаемой жидкости — за­меняют более общие законы движения жидких сред и взаимодействия их с твердыми телами. Эти сложные дифференциальные уравнения содержат время и коор­динаты перемещающихся частиц и способны дать более полную картину трехмерного мира жидкостей и газов с учетом всех действующих сил. В них входят физические константы среды: вязкость, плотность и другие, найден­ные из опыта. В них (совместно с граничными условия­ми) заложена вся информация о течении — они могут ответить на вопрос: куда и в какое время придет любая частица жидкости, предсказать все явления и факты. Многочисленные опыты и практика подтвердили их пра­во называться фундаментальными законами природы. Однако решение этих уравнений является очень слож­ным делом и не всегда возможно, даже при современ­ных ЭВМ.

Гидромеханика, как и другие естественные науки, веками поднималась к вершинам познания «в связке альпинистов»: опыт — теория. Первый шаг делает опыт, это наблюдение, установленный факт (еще не полностью понятый), использование в практике каких-то явлений. Опыт ставит задачи, подтягивает за собой теорию. Она делает следующий шаг: как правило, бросок выше по­ставленного рубежа, к математическим обобщениям. Теория многое объяснила, но теперь возникли новые задачи для опыта, в которых теория выступает уже за­казчиком: нужно проверить в эксперименте решения ее уравнений, правильность гипотез. Снова включается опыт — уже на следующей ступени, вооруженный новой приборной техникой. Так, выполняя заказ времени, из­вестный американский физик А. Майкельсон (1852— 1931) ставит в 1881 году свой знаменитый опыт по из­мерению скорости света. Он использует для этого точ­ные дифракционные решетки Роуленда. И вот резуль­тат: гибнет старая гипотеза эфира, рождается теория относительности — «связка» преодолевает величайший барьер в истории науки.

Так попеременно вырубая ступени в упорной породе, обгоняя и подтягивая друг друга, непрерывно движутся в единой связке опыт и теория. Общие дифференциаль­ные уравнения гидромеханики — одна из самых высо­ких вершин этого восхождения: с нее далеко видно.


Катаклизмы внутри форсунки


Теперь со знанием дела, слегка подкованные по части гидродинамики, обратимся снова к форсунке: интерес­но, как там работает связка «опыт—теория»? Вблизи горизонтальной оси форсунки, где радиус r мал, скорость вращения жидкости и велика, это диктуется уравнени­ем (2). Велика и кинетическая энергия — слагаемое в законе Бернулли pu2/2. Следовательно, другое слагае­мое— давление Р — мало. Двигаясь все ближе к оси, при r ->0 получаем — согласно уравнениям (2) и (3) — нечто странное: и->, Р-> —∞.

Это называется особой точкой решения. Математика начинает «чудить», приводит к противоречию с физи­кой, к невозможному результату: бесконечная скорость, бесконечное, да еще отрицательное давление.

Но часто математический парадокс как бы подает сигнал: здесь не разрыв со здравым смыслом, а разрыв в самой картине явления — ищите резкого изменения формы течения. А происходит вот что: когда давление у самой оси упадет ниже уровня давления среды, воз­дух из атмосферы засосётся внутрь форсунки через соп­ловое отверстие и образуется полость — воздушный вихрь радиуса rm , подобие воронки в ванне при сливе воды. Математическое зеркало, даже искривляясь, как бы продолжает своей кривизной отражать реаль­ность.

Теория центробежной форсунки создавалась у нас на глазах, и многие помнят, как возникла неожиданная, трудность: число уравнений в задаче оказалось меньше числа неизвестных — радиус вихря rm стал «лишним», для него не хватило одного уравнения. Проблема зашла в тупик, поскольку было неясно, как вычислить главную величину — расход жидкости. В уравнении



Тогда Г. Н. Абрамович решил: посмотрим структуру неизвестного, и построил зависимость расхода от радиу­са rm или, что равносильно, от коэффициента φc (при постоянном давлении подачи). Обнаружилась характер­ная особенность: при малых rm (толстое колечко) сече­ние выхода хорошо заполнено жидкостью, зато осевая скорость потока мала и их произведение (расход) мало; при больших rm (тонкое колечко) выходное сечение за­полнено плохо, и, хотя скорость велика, расход опять мал. На кривой при каком-то промежуточном значении rm обнаружился четкий максимум: природа как бы сама обращала внимание исследователя на одну особенную точку графика. Интуиция исследователя подсказала Генриху Наумовичу смелый «принцип максимума рас­хода», отбирающий одно-единственное в целом мире ре­шение; из всех возможных вихрей форсунка избирает такой, что расход жидкости получается наибольшим. Этот принцип позволил замкнуть теорию — интуиция заменила недостающее уравнение.

Опыт подтвердил красивую гипотезу в определенном диапазоне режимов. Был достигнут существенный про­гресс. В дальнейшем теория уточнялась и развивалась советскими учеными Л. А. Клячко, В. И. Скобелкиным, В. Б. Тихоновым и другими. Она нашла самое широкое применение в инженерной практике, поскольку позволя­ет просто вычислять расход жидкости и угол распыли­вания. Массовый расход в соответствии с уравнени­ем (5) запишется так:



характеристика форсунки, r и п — соответственно ра­диус и число каналов камеры закручивания.

Геометрическая характеристика оказалась фактором подобия: самые разные форсунки, имеющие одинаковую комбинацию основных размеров А, имеют одинаковые коэффициенты расхода μ и углы распыливания. Теперь общая картина течения в форсунке выглядит так. По­ток, попадая из широкой камеры закручивания в узкое сопло, ускоряется — работает уравнение сохранения расхода. Убыстряется и вращение, как у фигуриста, мгновенно сложившего на груди до этого раскинутые руки (уравнение сохранения момента количества дви­жения). Давление жидкости, вышедшей в открытое про­странство, должно упасть до атмосферного, центробеж­ное давление — исчезнуть. Но энергия не исчезает. По уравнению Бернулли потенциальная энергия переходит в кинетическую, то есть возрастает скорость истекаю­щей пелены, и она на самом выходе утоньшается. Итак, остроумная догадка о максимуме расхода разрешила трудности и дала законченную теорию явления.

Однако возникает вопрос: как же получилось, что не хватило уравнений и строгую логику пришлось заме­нить гипотезой? Победителей не судят, но если бы пред­положение ученого не оправдалось? Быть может, какой-то фактор выпал из рассмотрения, какие-то связи не были учтены? Вопрос законный, серьезный. Для ответа мобилизуем все ту же испытанную связку «опыт—тео­рия». Вглядимся внимательней в явление, вернувшись опять к форсунке. Но теперь приделаем к ней, продол­жая выходной канал, длинную прозрачную трубку — сопло из плексигласа. Раньше мы видели поток всегда с тыла или на выходе, сейчас можем взглянуть сбоку. Действительно, в профильной проекции обнаружилось нечто новое: у самого входа в сопло из камеры виднеет­ся крутая ступенька (иногда не одна) — резкое падение толщины жидкого колечка; внезапный рост радиуса вихря rm (рис. 10). Сразу появляется информация к размышлению: что за скачок? Где такое бывает? По­ищем аналогии — путь в науке очень полезный. Карто­тека памяти выдает необычный, запомнившийся образ: ведь это гидравлический прыжок, и возникает он дей­ствительно в потоках, сходных с нашим.


Гидравлики подробно изучают течение в открытом русле водослива (например, оросительный канал).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Необыкновенная жизнь обыкновенной капли"

Книги похожие на "Необыкновенная жизнь обыкновенной капли" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Марк Волынский

Марк Волынский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Марк Волынский - Необыкновенная жизнь обыкновенной капли"

Отзывы читателей о книге "Необыкновенная жизнь обыкновенной капли", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.