» » » » Валентин Бобков - Космические корабли


Авторские права

Валентин Бобков - Космические корабли

Здесь можно скачать бесплатно "Валентин Бобков - Космические корабли" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство Знание, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Валентин Бобков - Космические корабли
Рейтинг:
Название:
Космические корабли
Издательство:
Знание
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Космические корабли"

Описание и краткое содержание "Космические корабли" читать бесплатно онлайн.



Брошюра подписной научно-популярной серии «Космонавтика, астрономия» библиотечки «Знание. Новое в жизни, науке, технике» № 11, 1984 г.

В брошюре рассказывается о космических кораблях, занимающих центральное место среди различных типов космических аппаратов. Описываются структура, основные системы и оборудование космических кораблей от первых «Востоков» до современных совершенных транспортных средств.

Брошюра рассчитана на широкий круг читателей, интересующихся актуальными вопросами космической техники.






Созданная позднее, в конце 60-х годов, конструкция обеспечивала уже герметичное соединение стыка с образованием переходного туннеля (рис. 8). Это стыковочное устройство, установленное впервые на орбитальной станции «Салют» и транспортном КК «Союз», успешно эксплуатируется в космосе второй десяток лет. Система стыковки (вся аппаратура управления, участвующая в непосредственном соединении космических аппаратов) может работать автоматически или управляться дистанционно. Такое построение также пригодилось при создании грузовых кораблей «Прогресс».

Рис. 8. Схема стыковки КК «Союз» со станцией «Салют»: а — образование первичной механической связи, б — образование вторичной механической связи, в — нарушение первичной механической связи, г — открытие переходных люков (1 — приемный конус, 2 — штанга, 3 — гнездо, 4 — головка штанги, 5 — замок стыковочного шпангоута, 6 — привод крышки люка, 7 — крышка люка, 8 — рычаг выравнивания)

Комплекс радиосредств КК «Союз» обеспечивает выполнение всех перечисленных ранее пяти основных функций (двусторонней связи, телевидения, траекторных измерений, дистанционного управления, телеметрического контроля) в орбитальном полете, при спуске с орбиты и после приземления. Часть этих средств, размещенная в СА, позволяет поддерживать почти непрерывную двустороннюю связь с космонавтами (кроме участка наиболее интенсивного торможения в атмосфере, когда СА окружен слоем электрически проводящей плазмы, непрозрачной в радиодиапазоне). При спуске на парашюте и после приземления осуществляется радиопеленг.

Как уже говорилось раньше, КК «Союз» стал первым отечественным кораблем, на котором выполнялся управляемый спуск в атмосфере. За счет этого значительно увеличилась точность приземления, упростился поиск и стала более оперативной помощь космонавтам, что особенно важно после длительных полетов, после воздействия при спуске больших физических и эмоциональных перегрузок на человеческий организм, который перед этим адаптировался к полному отсутствию перегрузок в условиях невесомости.

Последнюю точку в полете делает СА при касании о Землю. За счет усовершенствований в системе посадки последняя стала мягкой, что обеспечивается срабатыванием 4 пороховых двигателей, производимым по сигналу специального высотомера на высоте около 1 м. При взлете и посадке космонавты размещаются в КК в ложементах, вложенных в кресла и изготовленных по индивидуальному заказу — ложемент этого кресла делается по контурам тела космонавта. Кроме того, сами кресла имеют специальные амортизаторы. Все это помогает космонавтам переносить большие перегрузки.

Ракетно-космическая система «Союз» снабжена тщательно продуманной системой САС. Последняя обеспечивает отделение и увод от РН части КК в составе так называемого головного блока при возникновении угрожающей ситуации. Спасение экипажа в СА обеспечивается фактически от периода нахождения ракетно-космической системы на стартовом столе до выхода на орбиту. На начальных этапах увод осуществляется специальной твердотопливной двигательной установкой, которая размещена на головном обтекателе РН, предохраняющем КК от аэродинамических нагрузок.

Тяга основного двигателя САС составляет около 800 кН. В состав двигательной установки входит также двигатель бокового увода и двигатель штатного сброса САС тягой около 200 кН. После этого происходит сброс головного обтекателя РН (раскрыв створок при помощи твердотопливных двигателей). Затем КК может быть просто отделен от РН. Причем во всех случаях для приземления используются имеющиеся штатные средства системы приземления.

Программа пилотируемых полетов КК «Союз», начатая 23 апреля 1967 г. В. М. Комаровым на КК «Союз-1», включала в себя 39 полетов КК с космонавтами на борту (в том числе один суборбитальный) и 2 полета КК без космонавтов. Всего в программе участвовало 40 различных советских космонавтов и 9 зарубежных (по программе «Интеркосмос»)[1].

Программа «Аполлон»

Под этим названием в 60-х годах в США проводился огромный комплекс работ, основной задачей которого была высадка человека на Луну. Выполнение программы, престижное значение которой занимало далеко не последнее место, потребовало израсходования около 25 млрд. долл. В целом, однако, это достижение было итогом развития всей мировой науки и техники. Недаром американские космонавты Н. Армстронг и Э. Олдрин, первыми вступившие на Луну, оставили там вымпелы в честь первого космонавта планеты Ю. А. Гагарина и других советских и американских космонавтов, отдавших свою жизнь за дело освоения космоса.

Для осуществления всех предыдущих программ в США в качестве РН в той или иной мере использовались созданные ранее баллистические ракеты. Для вывода на трассу к Луне космического комплекса массой немногим меньше 50 т пришлось создать гигантскую трехступенчатую РН «Сатурн-5» длиной 110,7 м и стартовой массой (вместе с КК «Аполлон-11») 2905 т при тяге двигателей первой ступени 33 800 кН. Это само по себе представляло собой сложную задачу и требовало длительного времени, поэтому она выполнялась в несколько этапов. Вначале были созданы РН «Сатурн-1» и «Сатурн-1Би», которые применялись для отработочных полетов на околоземных орбитах.

Но даже такой огромной РН, как «Сатурн-5», оказалось недостаточно для прямого полета КК на Луну и возвращения его на Землю. Чтобы уложиться в «полезный груз», определяемый РН, специалисты рассмотрели несколько возможных схем полета со стыковкой в космосе. В принятом варианте космический комплекс состоял из двух частей: основного блока КК «Аполлон» (с маршевой двигательной установкой) массой 28,8 т и двухступенчатого лунного модуля (состоявшего из посадочной и взлетной ступеней) массой 15 т.

После повторного запуска третьей ступени РН «Сатурн-5» на орбите искусственного спутника Земли скорость всего космического комплекса доводилась до 10,83 км/с, достаточной для полета к Луне. Маршевый двигатель основного блока КК «Аполлон» включался в полете многократно. Наибольшее продолжительное время (около 6 мин) он работал для того, чтобы обеспечить выход КК с тремя космонавтами на борту на орбиту искусственного спутника Луны. Основной блок КК с одним космонавтом оставался на такой орбите, а на Луну спускался лунный модуль с двумя космонавтами. Для этого использовалась двигательная установка посадочной ступени, имевшая двигатель с регулируемой тягой.

Перед возвращением на Землю лунному модулю необходимо было вначале вновь попасть на орбиту искусственного спутника Луны и состыковаться с основным блоком КК. С этой целью использовалась взлетная ступень лунного модуля. Затем, для старта к Земле, снова включался (на 149 с) маршевый двигатель основного блока КК. Возвращаемая часть КК входила со второй космической скоростью в земную атмосферу и после торможения в ней совершала посадку на парашютах.

Общую разработку ракетно-космического комплекса в целом и самого КК осуществляли специалисты центра пилотируемых полетов в Хьюстоне. Многие из них участвовали ранее в создании КК «Меркурий», использовался также опыт, накопленный в процессе выполнения программы «Джемини». Ряд вопросов конструирования ракетно-космического комплекса, его отдельных частей и систем потребовал существенной модернизации конструкторских решений или даже нового подхода. Большое внимание уделялось надежности и особенно безопасности полета, однако полностью избежать серьезных аварий как при наземной отработке, так и в полете не удалось.

Рис. 9. Компоновка основного блока КК «Аполлон»: 1 — тормозные парашюты, 2,3 — двигатели управления по тангажу командного модуля, 4 — хранилища груза, 5 — двигатели управления по крену командного модуля, 6 — блок вспомогательных двигателей служебного модуля, 7 — топливные баки маршевого двигателя, 5 — маршевый двигатель, 9 — остронаправленная антенна, 10 — баки топливных элементов, 11 — топливные элементы, 12 — бачок с питьевой водой, 13 — двигатели управления по курсу командного модуля, 14 — огнетушитель, 15 — топливные баки системы ориентации командного модуля, 16 — хранилище пищи, 17 — командир. КК, 18 — основные парашюты, 19 — пилот основного блока, 20 — пилот лунного модуля, 21 — стыковочный механизм

Основной блок КК «Аполлон» состоял из двух модулей (рис. 9): командного, который возвращался на Землю, и служебного с маршевой двигательной установкой и другим оборудованием, использовавшимся при полете в космическом пространстве. Масса командного модуля после приводнения составляла 5,3 т.

Состав систем и их размещение в модулях основного блока примерно соответствовали другим КК, которые использовались для орбитальных полетов. В командном модуле находилось все, что нужно было для трех космонавтов при полете до 16 сут, вплоть до приводнения. Кроме того, в его передней части размещался активный стыковочный агрегат с переходным туннелем. Этот агрегат служил для стыковки с лунным модулем, причем использовался дважды — для перестыковки (рис. 10) и на участке полета к Луне. Необходимость в перестыковке заключалась в том, что лунный модуль находился под основным блоком КК внутри переходника РН. Такая компоновка обеспечивала рациональное построение САС и защищала лунный модуль при полете РН в атмосфере. Вторая стыковка выполнялась на орбите искусственного спутника Луны.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Космические корабли"

Книги похожие на "Космические корабли" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Валентин Бобков

Валентин Бобков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Валентин Бобков - Космические корабли"

Отзывы читателей о книге "Космические корабли", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.