» » » » Джордж Эллис - Далекое будущее Вселенной Эсхатология в космической перспективе


Авторские права

Джордж Эллис - Далекое будущее Вселенной Эсхатология в космической перспективе

Здесь можно скачать бесплатно "Джордж Эллис - Далекое будущее Вселенной Эсхатология в космической перспективе" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство ББИ, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джордж Эллис - Далекое будущее Вселенной Эсхатология в космической перспективе
Рейтинг:
Название:
Далекое будущее Вселенной Эсхатология в космической перспективе
Издательство:
ББИ
Жанр:
Год:
2012
ISBN:
978–5-89647–271–1
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Далекое будущее Вселенной Эсхатология в космической перспективе"

Описание и краткое содержание "Далекое будущее Вселенной Эсхатология в космической перспективе" читать бесплатно онлайн.



Настанет ли в процессе развития вселенной такой момент, когда существование человечества подойдет к концу? И как насчет самой вселенной — погибнет ли она когда‑нибудь или будет существовать вечно? Подборка рассуждений на эти темы представлена в сборнике «Вселенная в далеком будущем», вышедшем под редакцией Джорджа Эллиса и состоящем из восемнадцати статей. Различные перспективы, обсуждаемые авторами этой книги, базируются на научных открытиях прошлого и настоящего, проецируемых в будущее. Эти рассуждения стимулируют, бросают вызов, побуждают к дальнейшим размышлениям, однако не дают забывать о том, что, возможно, наши теории не удастся проверить до конца времен.

Просуществует ли вселенная еще сто миллиардов лет? Не претерпит ли катастрофического превращения наше нынешнее пространство, обратившись в иное пространство с иными физическими законами? Можем ли мы построить богословие будущей вселенной? В этой книге ведущие богословы, философы и ученые вместе обсуждают далекое прошлое и далекое будущее вселенной — космические эпохи, масштаб которых несравним с опытом всего человечества. Среди авторов — известнейшие специалисты: Джон Бэрроу, Пол Дэвис, Роберт Рассел, Фримэн Дайсон и другие. Богослов Юрген Мольтман вносит неожиданный, но важный вклад в разработку темы, исследуя мотивы христианской эсхатологии в применении к будущему вселенной.

Это поистине поворотная книга. Изложенные ведущими учеными представления о судьбе нашей вселенной сочетаются здесь с философскими прозрениями известных богословов. Никому прежде не удавалось осуществить подобный синтез. Книга отличается новизной представленных в ней взглядов, оригинальностью и глубиной.

Грегори Бенфорд,

Калифорнийский университет






(TN/θR) = f(x), х = (hω/kθR), (108)



где f есть универсальная функция от х. Если х близко к единице, то в шуме преобладает реликтовое излучение и f(x) имеет планковскую форму


f(x) = fP(x) = х (ех — 1)-1, х ~ 1. (109)


Однако возможны значительные отклонения от (109) как при большом х (результате красного смещения звездного света), так и при маленьком х (результате нетермальных радиоизлучений). Не углубляясь в детали, скажем просто, что f(x) в целом является уменьшающейся функцией х и быстро стремится к нулю по мере того, как х —> ∞.

Общая энергетическая плотность радиации во вселенной составляет


(4π/c) ∫I(ω) hωdω = (kθR)4I / (π2h3c3), (110)


где


I = ∫0∞f(x)x2dx. (1ll)


Интеграл I должен сходиться как при высоких, так и при низких частотах. Следовательно, мы можем найти такое числовое ограничение b, что


x3f(x)<b (112)


для всех х. В сущности, (112), вероятно, выполняется при b = 10, если мы будем избегать некоторых определенных частот, например водородной линии 1420 Мгц.

Число шумовых фотонов, полученных в течение времени tB приемником с шириной полосы В' и сечением составляет


FN = 4π∫'B'τBI(ω'). (113)


Подставляя значения из (95), (96), (100), (103) и (108) в (113), получаем:


FN = (2r0/λB)fN'F', (114)


где


r0 = (e2/mc2) = 3∙10–13cm, (115)


а


λB = (hc / kθ'R) = Λ-1RB (116)


— длина волны фонового реликтового излучения во время приема сообщения. Если F' — сигнал, то отношение сигнала к шуму равняется


RSN = (λB / 2fN'r0). (117)


В этой формуле f — отношение шума и температуры, заданное (108), N' — число электронов приемника, а ρ0, λB заданы (115) и (116). Отметим, что в вычислении (117) мы не даем приемнику возможности выбора угла, поскольку сечение заданное (95), не зависит от направления.

Теперь подведем итоги нашего анализа. У нас имеются передатчик и приемник на мировых линиях А и В, передающие и принимающие сигналы во время tA = Т0 (sinhξ — ξ), tB = Т0 (sinh(ξ + η) — (ξ + η)). (118)

Согласно (89) и (101),


τA = δ(dtA/dξ), τB = δ(dtB/dξ). (119)


Для удобства будем считать, что передатчик постоянно направлен на приемник и передает сообщения с определенным циклом 8, который может изменяться в зависимости от Когда 5 = 1, передатчик все время включен. Число F' фотонов, принимаемых во время τв, может рассматриваться как количество битов в отношении к переменной ξ. В сущности, F'dξ — это число битов, получаемых в интервале dξ. Работать с переменной ξ полезно, поскольку она поддерживает постоянное различие л между А и В.

Из (100), (101), (103), (107) и (108) мы выводим простую формулу количества битов:


F = Λхδ. (120)


Энергия Е, переданная во время τА, может также рассматриваться как скорость передачи энергии в единицу интервала Из (104) и (120) мы выводим



Е = (Λ3 / NN') (1 + z) (sinh2η)x3δEc. (121)


Мы все еще можем свободно выбирать параметры х [определяя частоту со согласно (108)] и 5, оба из которых могут изменяться в зависимости от Единственные ограничения — (102) и сигнально–шумовое условие


RSN≥10, (122)


где соотношение сигнала и шума вычисляется согласно (117). Если мы предположим, что (112) верно при b = 10, (122) будет обеспечивать, что


х >(G/r)1/3, (123)


где


G = (200r0 / λp) N' (1+z)-1 = 10–9N' (1+z)-1, (124)

r = (RA / Rp) = (cosh ξ – 1) / (cosh ξp – 1). (125)


Здесь λp, Rp и ξp — текущие значения длины волн фоновой радиации, радиуса вселенной и временной координаты ψ Стоит отметить, что сигнально–шумовое условие (123) может быть трудно для соблюдения поначалу, пока r мало, но с течением времени, по мере того как во вселенной становится все тише, его становится все легче выполнять. Чтобы избежать чрезмерной траты энергии на ранних стадиях, вначале мы выбираем маленький цикл 5 и постепенно увеличиваем его, пока он не достигает единицы. Все условия выполняются, если мы выбираем


х = max [(G / r)1/3, ξ-1/2], (126)

δ = min [(r / G)ξ-3/2, 1], (127)

так что


х3δ = ξ-3/2 (128)


для всех Переход между двумя уровнями в (126) и (127) происходит при


ξ = ξT~logG, (129)


поскольку ξ логарифмически возрастает вместе с r согласно (125). При таком выборе х и 8 (120) и (121) дают следующее:


F' = Λmin [(r / G)2/3ξ-3/2, (130)

Е = (Λ3 / NN') (1+z) (sinh2η) Еcξ-3/2. (131)


Теперь рассмотрим общее число битов, полученных В вплоть до некоей эпохи ξ в отдаленном будущем. Согласно (130), их число равно приблизительно


FT = ∫χ F'dξ = 2Λξ1/2 (132)



и беспредельно возрастает по мере возрастания С другой стороны, общее количество энергии, излученной передатчиком на протяжении всего будущего, конечно:


Ет = ∑ξ, Edξ = 2(Λ3 / NN') (еη sinh2η)ξp-1/2Ec. (133)


В (133) я заменил красное смещение (1 + z) его асимптотическим значением еη при ξ —> оо. В результате я получил такое же оптимистическое заключение относительно возможностей коммуникации, как и на предыдущей лекции — относительно возможностей выживания. Оказывается, в принципе возможно вечно поддерживать коммуникацию с отдаленным сообществом в расширяющейся вселенной, используя конечный объем энергии.

Интересно прикинуть хотя бы грубое численное значение величин FT и ЕТ. Согласно (107), кумулятивное количество битов в каждом коммуникационном канале одинаково, порядка


FT = 1029ξ1/2, (134)


— количество информации, вполне достаточное для передачи истории сложной цивилизации. Чтобы оценить ЕТ, я предполагаю, что как передатчик, так и приемник содержат в себе 1 кг электронов, так что


N = N' = 1030. (135)


Затем (133) вместе с (105) дает


Ет = 1023 (eηsinh2η) erg. (136)



Это порядка 109 ватт∙лет — и по астрономическим стандартам очень малое количество энергии. Общество, имеющее доступ к энергетическим ресурсам звезды солнечного типа (около 1036 W лет), с легкостью обеспечит себя энергией для создания постоянных коммуникационных каналов с 1022 звездами, лежащими в пределах сферы η< 1. Иначе говоря, все сообщества внутри красного смещения


z = e – 1 = 1.718 (137)


смогут поддерживать постоянную связь между собой. С другой стороны, прямая коммуникация между двумя сообществами, находящимися на значительном расстоянии друг от друга, может оказаться непомерно дорогой. Из‑за быстрого экпоненциального роста Ет с η, верхний предел уровня возможной прямой коммуникации лежит в районе η = 10.

На расстояния, большие η = 10, легко передавать информацию без чрезмерных затрат энергии, если сообщества, расположенные по маршруту передачи сигнала, будут работать как трансляционные станции, принимая, усиливая и ретранслируя сигнал. В этом случае мы сможем передавать сообщения на сколь угодно большие расстояния во вселенной. В конечном счете каждое сообщество во вселенной сможет поддерживать контакт со всеми остальными.

Как я отмечал в первой лекции [см. равенство (11)], число галактик, лежащих в сфере η< ψ, возрастает подобно e2ψ, когда ψ велико. Так что, если мы попытаемся установить связь между отдаленными сообществами, перед нами встанет проблема жесткого отбора сообществ. Вдали от нас слишком много галактик. К каким из них прислушиваться? В какие отправлять сообщения? Чем более совершенны будут наши технические средства коммуникации, тем труднее нам будет решать, от каких коммуникаций отказываться.

В заключение хотелось бы подчеркнуть, что я не пытаюсь доказать свое утверждение — то, что возможна передача бесконечного количества информации средствами ограниченного объема энергии. Чтобы это доказать, мне следовало бы сконструировать передатчик и приемник и показать, как они работают. Я никогда даже не пытался представить себе конструкцию такой коммуникационной системы. Все, что я хотел, — показать, что система, работающая согласно моим спецификациям, не противоречит известным нам законам физики и теории информации.

Вселенная, которую я несколькими штрихами обрисовал в этих лекциях, очень отличается от той, которую имел в виду Стивен Уэйнберг, говоря: «Чем лучше мы понимаем вселенную, тем бессмысленнее она нам представляется». В моей вселенной нет пределов богатству и сложности бытия; в ней жизнь продолжается вечно, и живые существа обмениваются знаниями с себе подобными через невообразимые пропасти пространства и времени. Какая вселенная ближе к истине — Уэйнберга или моя? Что ж, когда‑нибудь, быть может довольно скоро, мы это узнаем.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Далекое будущее Вселенной Эсхатология в космической перспективе"

Книги похожие на "Далекое будущее Вселенной Эсхатология в космической перспективе" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джордж Эллис

Джордж Эллис - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джордж Эллис - Далекое будущее Вселенной Эсхатология в космической перспективе"

Отзывы читателей о книге "Далекое будущее Вселенной Эсхатология в космической перспективе", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.