» » » » Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия


Авторские права

Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия

Здесь можно скачать бесплатно "Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия" в формате fb2, epub, txt, doc, pdf. Жанр: Все книги в жанре Компьютерное "железо", издательство Издательский дом «Питер», год 2002. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия
Рейтинг:
Название:
Аппаратные интерфейсы ПК. Энциклопедия
Автор:
Издательство:
Издательский дом «Питер»
Год:
2002
ISBN:
5-94723-180-8
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Аппаратные интерфейсы ПК. Энциклопедия"

Описание и краткое содержание "Аппаратные интерфейсы ПК. Энциклопедия" читать бесплатно онлайн.



Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.






Таблица 7.25. Команды микросхем флэш-памяти Intel первого поколения

Команда Число циклов шины Первый цикл шины¹ Второй (третий) цикл шины¹ R/W Адрес Данные R/W Адрес Данные Read Memory 1 W X 00h - - - Read ID 3 W X 90h R 0(1) M_Id (D_Id) Set-up Erase/Erase 2 W X 20h W X 20h Erase Verify 2 W EA A0h R X EVD Set-up Program/Program 2 2 W X 40h W PA PD Program Verify 2 W X C0h R X PVD Reset 2 W X FFh W X FFh

¹ Здесь X обозначает несущественный адрес, M_Id и D_Id — идентификаторы производителя и устройства, EA — адрес ячейки, в которой контролируется стирание, EVD — данные, считанные при верификации стирания (должны быть FFh), PA и PD — адрес и данные программируемой ячейки, PVD — данные, считанные при верификации программирования.


Ниже описано назначение команд.

♦ Read Memory — команда чтения данных, переводящая микросхему в режим чтения, совместимый по интерфейсу с EPROM.

♦ Read ID — команда чтения идентификаторов. В последующих шинных циклах чтения по адресу 0 считывается M_Id (Manufacturer Identifier — идентификатор производителя, 89h), по адресу 1 — D_Id (Device Identifier — идентификатор устройства, для микросхем 8F256, 28F512, 28F010, 28F020 это B9h, B8h, B4h и BDh соответственно). Из этого режима микросхема выходит по записи любой другой действительной команды. Идентификаторы можно читать и путем подачи высокого напряжения на А9 (как и для EPROM).

♦ Set-up Erase/Erase — подготовка и собственно стирание. Внутренний цикл стирания начинается по подъему сигнала WE# во втором шинном цикле и завершается по последующему шинному циклу записи или по внутреннему таймеру (Stop Timer). Последующей командой обычно является верификация стирания. Два шинных цикла записи, необходимые для выполнения команды, Снижают вероятность случайного стирания и позволяют отказаться от выполнения стирания посылкой команды Reset. Наличие внутреннего таймера позволяет не заботиться о точной выдержке времени для стирания, необходимо только выдержать минимальный интервал (около 10 мс). Перед стиранием все биты микросхемы должны быть предварительно запрограммированы в нули.

♦ Erase Verify — верификация стирания. Отличается от обычного считывания тем, что проверяемая ячейка ставится в более жесткие условия считывания для повышения достоверности контроля стирания. Между шинными циклами команды верификации должна быть пауза не менее 6 мкс. Алгоритм быстрого стирания (Quick-Erase) предусматривает предварительное обнуление всех ячеек (командами программирования) и выполнение команды стирания, сопровождаемой верификацией. Команды верификации последовательно выполняются для каждой ячейки микросхемы. Если результат считывания отличается от FFh, производится повторное стирание (длительностью 10 мс), и последующая верификация может начинаться с первой ранее не стертой ячейки. Если количество повторов стирания превышает 3 000, фиксируется ошибка стирания и микросхема признается негодной. Алгоритм позволяет выполнить полное стирание микросхемы менее чем за секунду.

♦ Set-up Program/Program — подготовка и собственно программирование. Команда выполняется аналогично стиранию, но во втором шинном цикле передается адрес и данные программируемой ячейки, а последующая выдержка должна составлять не менее 10 мкс.

♦ Program Verify — верификация программирования (аналогично верификации стирания), обычно следующая после команды программирования. Между шинными циклами команды верификации должна быть пауза не менее 6 мкс. Алгоритм быстрого программирования (Quick-Pulse Programming) предусматривает формирование внутреннего цикла программирования длительностью 10 мкс с последующей верификацией. В случае несовпадения результата выполняется повторное программирование (до 25 раз для каждой ячейки), а если и это не помогает — фиксируется отказ микросхемы.

♦ Reset — команда сброса, прерывающая команду программирования или стирания. Эта команда не меняет содержимое памяти; после нее требуется подача другой действительной команды.

По включении питания внутренний регистр команд обнуляется, что соответствует команде чтения, и микросхема работает как обычная микросхема PROM или EPROM. Это позволяет устанавливать микросхемы флэш-памяти вместо EPROM аналогичной емкости. При подаче на вход VPP низкого напряжения (0–6,5 В) стирание и программирование невозможны, и микросхема ведет себя как обычная EPROM.

Микросхемы второго поколения секторированы — ячейки группируются в блоки, допускающие независимое стирание (асимметричное разбиение — Boot Block и симметричное — Flash File). Длительная операция стирания одного блока может прерываться для считывания данных других блоков, что значительно повышает гибкость и производительность устройства. Микросхемы имеют более сложный внутренний управляющий автомат и в них введен регистр состояния, что позволяет разгрузить внешний процессор и программу от забот по отслеживанию длительности операций программирования и стирания, а также упростить эти процедуры.

В отличие от микросхем первого поколения, в шинном цикле записи адрес и данные фиксируются по положительному перепаду WE#. Низкий уровень дополнительного управляющего сигнала RP# (в первых версиях обозначался как PWD#) предназначен для перевода микросхемы в режим с минимальным потреблением. В этом режиме модификация содержимого памяти невозможна. Соединение этого вывода в нормальном режиме (когда не требуется перезапись Boot-блока) с системным сигналом RESET# предохраняет микросхему от выполнения ложных команд, которые могут появиться в процессе подачи питания.

Внутренние операции стирания и программирования выполняются после посылки соответствующих кодов во внутренний регистр команд. Команды приведены в табл. 7.26. Как и в первом поколении, этот регистр для большинства команд безадресный, но команды программирования и стирания посылаются по требуемому адресу ячейки (блока). Отработка операций внутренним управляющим автоматом отображается соответствующими битами регистра состояния SR (Status Register), по значению которых внешняя программа может получить информацию о результате выполнения и возможности посылки следующих команд. Чтение регистра SR выполняется по специальной команде; есть и команда его очистки. Назначение бит регистра состояния описано ниже.

♦ SR.7 — WSMS (Write State Machine Status) — состояние управляющего автомата:

 • 0 — Busy (занят операцией стирания или программирования);

 • 1 — Ready (свободен).

♦ SR.6 — ESS (Erase Suspend Status) — состояние операции стирания:

 • 0 — стирание завершено или выполняется;

 • 1 — стирание приостановлено.

♦ SR.5 — ES (Erase Status) — результат стирания блока:

 • 0 — блок стерт успешно;

 • 1 — ошибка стирания.

♦ SR.4 — PS (Program Status) — результат программирования байта:

 • 0 — байт записан успешно;

 • 1 — ошибка записи.

♦ SR.3 — VPPS (VPP Status) — состояние VPP во время программирования или стирания:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Аппаратные интерфейсы ПК. Энциклопедия"

Книги похожие на "Аппаратные интерфейсы ПК. Энциклопедия" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Михаил Гук

Михаил Гук - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия"

Отзывы читателей о книге "Аппаратные интерфейсы ПК. Энциклопедия", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.