» » » » Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы


Авторские права

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Здесь можно купить и скачать "Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «ОНИКС 21 век» «Мир и Образование», год 2003. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы
Рейтинг:
Название:
Сборник задач по математике с решениями для поступающих в вузы
Издательство:
неизвестно
Год:
2003
ISBN:
5-329-00766-6, 5-94666-080-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сборник задач по математике с решениями для поступающих в вузы"

Описание и краткое содержание "Сборник задач по математике с решениями для поступающих в вузы" читать бесплатно онлайн.



Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.

Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.

Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.






1.15. Если рассматривать длины сторон AC = b и BC = а, то все участвующие в задаче геометрические величины будут связаны с площадью треугольника ABC.

1.16. Чтобы геометрически связать окружность с центром О и окружность с центром О1, нужно провести отрезки СО и ВО (рис. I.1.16). Окружность О1 описана около треугольника СОВ. Длина хорды СВ известна. Следовательно, для того, чтобы найти радиус, достаточно определить угол СОВ.

1.17. Задачу удобно переформулировать иначе: через центр вписанной окружности проведем прямую, параллельную средней стороне треугольника, и докажем, что она пройдет через точку пересечения медиан, т. е. точка пересечения этой прямой с медианой, опущенной на меньшую сторону, делит медиану в отношении 2 : 1.

1.18. Воспользоваться методом сравнения площадей.

1.19. Точки A, О и L лежат на одной прямой — биссектрисе угла ВАС, аналогично точки В, О и K лежат на биссектрисе угла АВС. Прямая KL делит угол АСМ пополам (СМ — продолжение BC).

По условию A = 2С, а В = 4С (рисунок сделайте самостоятельно).

1.20. Так как сумма углов в треугольнике равна π, то углы А, В и С нетрудно вычислить.

1.21. Сделать несложное дополнительное построение, чтобы получились подобные треугольники.

1.22. Поскольку отрезки, длины которых входят в правую часть равенства, лежат на одной прямой, нужно выразить длины всех отрезков на той же прямой. Тем самым мы «спрямим» записанное соотношение и сделаем его доказательство простым.

1.23. В формулу входят отношения. Поэтому целесообразно сделать дополнительные построения, в результате которых получатся подобные треугольники.

1.24. При построении, описанном в условии, возникают подобные треугольники. Нужно с их помощью заменить стоящие в левой части отношения новыми отношениями с тем, чтобы в знаменателе была одна и та же сторона треугольника, а в числителе — отрезки этой стороны. (!)

1.25. Положение прямой, проходящей через точку О, можно определить с помощью угла α, который эта прямая составляет с некоторым фиксированным радиусом описанной окружности. Нужно доказать, что величина, о которой говорится в условии, не зависит от α.

1.26. Чтобы ответить на вопрос задачи, нужно знать стороны данного треугольника и радиус описанной около него окружности. С вычисления этих величин и следует начать решение задачи.

1.27. Связать углы треугольника и его стороны можно либо с помощью теоремы синусов, либо с помощью теоремы косинусов. Данное в условии соотношение между сторонами треугольника подсказывает, что теорема косинусов удобнее.

1.28. Если отрезки ОА, ОВ и ОС, входящие в данное соотношение ОА² = ОВ · ОС, выразить через радиус r вписанной окружности и углы треугольника, то должно получиться соотношение между тригонометрическими функциями этих углов, не содержащее r. (!)

1.29. Применить формулу, выражающую площадь треугольника через две стороны и синус угла, и теорему косинусов. (!)

1.30. Чтобы доказать равенство двух отрезков, о которых идет речь в условии, можно ввести элементы, определяющие треугольник, и выразить через них эти отрезки. То же самое можно сделать геометрически: четырехугольник О1ЕDО3 (рис. I.1.30), построенный на отрезке О1О3, таков, что каждая из трех его остальных сторон равна половине соответствующей стороны треугольника. Остается построить такой же четырехугольник на отрезке ВО2.

1.31. Площадь треугольника АFМ (рис. I.1.31) в восемь раз меньше площади треугольника АВС, так как АF = ½AB, а высота треугольника АFМ в четыре раза меньше высоты треугольника АВС (докажите). Если рассматривать AM и АD как основания треугольников АFМ и АВD, то соответствующие высоты этих треугольников относятся как 1 : 2. Выяснив, в каком отношении точка M делит отрезок АD, мы решим задачу.

1.32. Так как четырехугольник вписанный, то кроме входящих в задачу величин целесообразно рассмотреть радиус круга R и углы четырехугольника. Введя углы, мы сможем использовать свойство вписанного четырехугольника.

1.33. Использовать тот факт, что боковые стороны трапеции и отрезок, соединяющий середины ее оснований, лежат на прямых, пересекающихся в общей точке.

1.34. Если обозначить сторону квадрата через а, а расстояние от точки M до самой ближней стороны (либо до AB, либо до CD) через x, то остальные расстояния можно выразить через а и x.

1.35. Фигура, площадь которой нужно определить, на рис. I.1.35 заштрихована. Отрезок CD разбивает эту фигуру на правильный треугольник и трапецию. Длина отрезка АF известна, она равна 3/2. Если мы сможем определить длину отрезка СЕ (обозначим ее x), то задача будет решена.

1.36. Из параллельности сторон трапеции и треугольника следует, что углы при основании треугольника и при нижнем основании трапеции равны. Если обозначить эти углы через α, то можно выразить через α и другие углы, связанные с треугольником и трапецией.

1.37. Треугольники АОD и BОС подобны. Это позволяет из отношения оснований трапеции получить отношение высот треугольника АОD и трапеции. (!)

1.38. Нас интересует периметр третьего многоугольника. Обозначим его через x. Введем также радиус окружности R и число сторон b первого многоугольника.

1.39. Окружность не может лежать между точками M и О (докажите). Ее центр О1 лежит на биссектрисе угла АОВ.

1.40. Из данного отношения площадей треугольников АВС и АDЕ, записанного в виде отношения произведений катетов, и из свойства произведения секущей на ее внешнюю часть найти отношение AE/AB.

1.41. Пусть О1 — центр окружности, радиус которой мы ищем, а О — центр данной окружности. В качестве связующего звена следует рассмотреть треугольник АОО1.

1.42. Нужно обозначить сторону квадрата через а и составить с помощью теоремы Пифагора биквадратное уравнение для определения а через R и r.

1.43. Вписанный в сегмент квадрат не должен нарушать симметрии сегмента. Поэтому он расположится так, как показано на рис. I.1.43. Обозначим половину стороны квадрата через x и составим уравнение относительно x.

1.44. Чтобы использовать условия задачи, нужно провести радиусы обеих окружностей в точки касания окружностей друг с другом и с нижним основанием. Центр меньшей окружности лежит на биссектрисе угла D.

1.45. Вначале для определенности удобно предположить, что точки P и Q лежат по разные стороны от CD. В этом случае диаметр CD разделит фигуры РQNМ и Р1Q1D на две части (рис. I.1.45). Нужно доказать, что площадь фигуры СQNK равна площади треугольника Q1OD. При этом полезен будет следующий факт. Если соединить точки Q и О, то, во-первых, угол QОС вдвое больше угла QDС, а во-вторых, треугольники ОQ1D и ОQD равновелики.

1.46. Соединим точки А и В, P и M и проведем радиусы из центра О в точки А и В (рис. I.1.46). Если длины отрезков AB, АР1 и ОАR заданы и отрезок AB построен, то прямоугольный треугольник АРВ и положение точки О определяются однозначно. Следовательно, зная длины этих отрезков, можно вычислить длины интересующего нас отрезка РМ.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сборник задач по математике с решениями для поступающих в вузы"

Книги похожие на "Сборник задач по математике с решениями для поступающих в вузы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Альберт Рывкин

Альберт Рывкин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы"

Отзывы читателей о книге "Сборник задач по математике с решениями для поступающих в вузы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.