» » » » Александр Громов - Удивительная Солнечная система


Авторские права

Александр Громов - Удивительная Солнечная система

Здесь можно купить и скачать "Александр Громов - Удивительная Солнечная система" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Литагент «Эксмо»334eb225-f845-102a-9d2a-1f07c3bd69d8, год 2012. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Громов - Удивительная Солнечная система
Рейтинг:
Название:
Удивительная Солнечная система
Издательство:
неизвестно
Год:
2012
ISBN:
978-5-699-55311-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Удивительная Солнечная система"

Описание и краткое содержание "Удивительная Солнечная система" читать бесплатно онлайн.



Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?

Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.

Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.






Существуют, правда, теории «холодного бариогенезиса», в которых рождение привычной нам материи с возникновением барионной асимметрии произошло гораздо позже – вблизи 10-10 с. Легко понять, что для нас сейчас эти тонкости не имеют значения.

К 10-10 с температура Вселенной за счет расширения упала до 1016 К. Вещество Вселенной – плазма. Она расширялась уже гораздо медленнее – по степенному закону. На 10-10 с произошел «электрослабый фазовый переход», когда силы единого электрослабого взаимодействия разделились на силы слабого взаимодействия и силы электромагнитные. Приобрели массу все известные нам элементарные частицы, безмассовым остался только фотон. Однако при столь больших температурах и плотностях о «нормальном» веществе говорить еще не приходится – во Вселенной могли существовать лишь кварки, нейтрино и частицы-переносчики слабого взаимодействия. Вселенная представляла собой своеобразный «кварковый суп». Лишь к моменту времени 10-4 с от Большого взрыва при температуре 1012 К из «слипшихся» кварков смогли наконец образоваться протоны и нейтроны. Аннигиляция вещества и антивещества привела к появлению громадного количества фотонов. На каждую частицу материи ныне приходится около миллиарда фотонов.

К исходу первой секунды жизни Вселенной ее температура упала «всего» до 10 млрд К. Это как раз характерная температура звездных недр. Что происходит в звездных недрах? Правильно, там идут ядерные реакции. Шли они и в очень молодой (но уже состоявшей из вещества) Вселенной. Но реакции реакциям рознь. Что же могло образоваться из первичного горячего и плотного скопища протонов и нейтронов за весьма ограниченное время?

Во-первых, дейтерий. Во-вторых, гелий-3 и гелий-4. И, наконец, литий. Последнего образовалось немного – не более 1 % от общей массы вещества во Вселенной. Дейтерия и двух изотопов гелия – несколько больше. Но все же основная часть протонов и нейтронов не успела прореагировать в отпущенный ей малый отрезок времени. Что до более тяжелых, чем литий, элементов, вроде бериллия или бора, то до образования сколько-нибудь заметного их количества дело просто не дошло – уже к двухсотой секунде от момента Большого взрыва расширяющаяся Вселенная успела остыть настолько, что ядерные реакции в ней прекратились.

Первые 50 тыс. лет во Вселенной доминировало излучение: плотность его энергии превышала плотность энергии вещества. Но так как первая зависит от размеров Вселенной в четвертой степени, а вторая – лишь в кубе, то рано или поздно должен был наступить момент доминирования вещества. Он и наступил – пока, впрочем, лишь для темной материи[5], не взаимодействующей с излучением. Казалось бы, что нам за дело до нее? Но именно темная материя, стекая в первичные, случайно возникшие и пока еще незначительные, гравитационные «ямы», начала «углублять» последние, подготавливая их для барионной материи.

Лишь спустя 300 тыс. лет после Большого взрыва излучение «отклеилось» от барионного вещества и получило возможность распространяться свободно. Температура Вселенной упала до 3000 К, и ядра получили возможность захватывать электроны. Барионная материя начала «сползать» в подготовленные темной материей гравитационные «ямы», подготавливая рождение крупномасштабной структуры Вселенной. Надо сказать, что каждая такая «яма» дала начало скоплению, а то и сверхскоплению галактик.

Отчего в молодой расширяющейся Вселенной возникли неоднородности, превратившиеся в гравитационные «ямы»? Вопрос, думается, лишен смысла. Гораздо труднее представить себе полностью однородную расширяющуюся Вселенную, лишенную каких бы то ни было, даже самых малых, флюктуаций плотности и температуры и сохраняющую однородность по мере расширения в бесконечность. Таких чудес в природе не бывает. А коль скоро флюктуации существуют, то в дальнейшем они будут только усугубляться. Температура же вещества будет все время падать и не станет препятствием к появлению в гравитационных «ямах» огромных облаков материи.

Так оно и происходило в действительности. Каждое такое облако имело определенную массу, температуру и некий интегральный момент вращения. В нем также возникали гравитационные «ямы» меньших размеров, куда стекало вещество. Со временем каждое облако делилось на меньшие облака, связанные друг с другом гравитационным взаимодействием, а те, в свою очередь, на еще меньшие. Так образовались скопления и меньшие, чем скопления, группы галактик вроде нашей Местной системы[6] и отдельные галактики.

Есть похожие галактики, но нет двух одинаковых. В 20-х годах XX века Эдвин Хаббл разделил галактики на три основных типа: спиральные (S), эллиптические (Е) и неправильные (Irr). В неправильные попали все галактики, которые не удалось причислить ни к спиральным, ни к эллиптическим.

Рассмотрим – в самом общем приближении – механизм формирования галактики. Мы увидим, что наша Галактика (часто называемая Млечным Путем) не зря относится к S-галактикам. Будь она Е-галактикой, в ней вряд ли могли бы образоваться в достаточном количестве планеты земной группы, а следовательно, вероятность возникновения жизни, тем более разумной, была бы малой, чтобы не сказать ничтожной.

Эллиптические галактики (рис. 1 на цветной вклейке) представляют собой более или менее сплюснутые сфероиды, состоящие из большого количества звезд – от десятков миллионов для карликовых Е-галактик до триллиона для сверхгигантских Е-галактик. Степень сжатия Е-галактик характеризуется цифровым индексом за буквой Е – от Е0 для сферических галактик до Е7 для сильно сжатых. Эллиптических галактик, более сжатых, чем Е7, не существует. Если галактика сжата сильнее, в ней уже образуются спиральные рукава, что выводит галактику из типа Е. Само собой, речь идет о реальном сжатии, а не о кажущемся, вызванном положением наблюдателя относительно галактики. В целом Е-галактики довольно невыразительны и в большинстве своем похожи друг на друга.

Спиральные галактики (рис. 2, 3 на цветной вклейке), напротив, демонстрируют разнообразие форм. Галактики подтипа Sa мало сплюснуты, их спиральные рукава не отходят далеко от обширного центрального балджа (окружающего галактическое ядро «вздутия», несколько напоминающего Е-галактику), не фрагментированы и не имеют ответвлений, а темная полоса пыли вдоль галактического экватора (характернейшая деталь S-галактик) довольно узка. Галактики подтипа Sc иные – у них маленькое ядро и совсем маленький балдж, если он вообще есть, рукава отходят от ядра резко, они фрагментированы и изобилуют ответвлениями, а пылевая полоса по экватору таких галактик мощная и широкая. Промежуточное положение между Sa и Sc занимают галактики подтипа Sb. Например, широко известная Туманность Андромеды (М31) относится к подтипу Sb, а Туманность Треугольника (М33) – к Sc. Хороший пример галактики Sa – М104 («Сомбреро»), см. рис. 4 на цветной вклейке.

Спиральные галактики могут отличаться друг от друга также по количеству спиральных рукавов. Часто их два, но не обязательно. Один из рукавов может быть «редуцирован» и превратиться в этакий едва заметный рудимент, и тогда у галактики по сути остается всего один рукав. Бывает, что у галактики развиваются три, четыре и более рукавов. У М33 три основных рукава и с десяток мелких, обрывочных. У галактики М63, известной под кличкой «Подсолнух», десятка два рукавов. У галактики М109 (рис. 5 на цветной вклейке), внешне похожей на нашу, четыре рукава, причем отходят они не от ядра, а от концов бара – перемычки, проходящей через ядро. Такие галактики с перемычками обозначаются как SBa, SBb и SBc.

Легко классифицировать галактики, глядя на них со стороны. Установить спиральную структуру нашего собственного Млечного Пути нам, находящимся внутри него, оказалось в высшей степени трудно. Теперь известно, что наша Галактика относится к подтипу SBb и имеет четыре основных спиральных рукава. Существуют и местные рукава – ответвления от основных. В одном из таких местных рукавов-ответвлений находится наша Солнечная система.

Казалось бы, к чему весь этот разговор об эволюции Вселенной и о галактиках, коль скоро тема книги – Солнечная система? Подождите немного, читатель, а пока поверьте на слово: это сделано не зря.

Во времена Хаббла считалось, что галактики в своем развитии проходят стадии от неупорядоченных Irr-галактик (рис. 6 на цветной вклейке) к Sc, Sb, Sa и далее к аккуратным (пусть и скучным) Е-галактикам. Этакое превращение дремучего леса во французский регулярный парк. Существовала и диаметрально противоположная точка зрения: галактики-де рождаются эллиптическими, затем в них развивается вращательная неустойчивость, что приводит к образованию спиральных рукавов, после чего галактика мало-помалу теряет структуру и становится неправильной. Словом, обратная эволюция: от регулярного парка – к дремучему лесу с буреломами.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Удивительная Солнечная система"

Книги похожие на "Удивительная Солнечная система" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Громов

Александр Громов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Громов - Удивительная Солнечная система"

Отзывы читателей о книге "Удивительная Солнечная система", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.