» » » Яков Гегузин - Капля


Авторские права

Яков Гегузин - Капля

Здесь можно скачать бесплатно "Яков Гегузин - Капля" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство «НАУКА», год 1973. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Капля
Издательство:
«НАУКА»
Жанр:
Год:
1973
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Капля"

Описание и краткое содержание "Капля" читать бесплатно онлайн.








 

Щеточка из водяных капель, расширяющаяся по мере роста напряженно­сти электрического поля


А теперь о частоте присе­даний или, лучше, так: о вре­мени τ, которое проходит между двумя приседаниями. Его можно определить, рас­суждая следующим образом. Растущая со временем капля будет увеличивать свой раз­мер до тех пор, пока давле­ние, оказываемое ею на струю (Рк), не станет равным давле­нию струи на каплю (Рс). Если нам известны скорость υ и сечение s струи, мы легко можем определить величины Рк и Рс. Они равны отноше­нию соответствующих сил Fк и Fс к сечению струи:

Рк = Fк/sиРс = Fс /s .

Очевид­но, Fк = тк. g,аFс = тс, где g — ускорение силы тя­жести, которой подвержена капля, тс — масса струи дли­ной h между наконечником и каплей, а ω — ускорение или, точнее, замедление, с которым движется струя. Так как у выхода из стеклянного наконечника струя имеет ско­рость υ,а в месте соприкосно­вения с набухшей каплей ее скорость обращается в нуль, то ω ≈υ / τ

Считая, что средняя скорость струи υcp =υ/2, можно записать, что

тк =υ/2. sρτ ,  а тс =shρ .

Вот теперь, приравнивая Рк и Рс, получим:

τ ≈ (2h/g)1/2

В наших опытах h = 20 см и, следовательно, τ должно бы равняться —10-1 сек. В действительности τ оказывается немного большим, видимо, из-за того, что набухшая кап­ля не свободно падает, а стекает вдоль струи, испытывая при этом трение о нее. А вот следующее из формулы пред­сказание, что τ ~h1/2, когда увеличение длины струи, к примеру, в 4 раза должно увеличить время между двумя приседаниями вдвое, — оправдывается.

Вторая кинограмма. Эта кинограмма отражает изме­нения, которые происходят с концом распадающейся струи, по мере того как возрастает напряженность электричес­кого поля Е. Отчетливо видно, что на конце струи вместо приседающей капли формируется густая щеточка, фон­танчик мелких капель, разлетающихся в разные стороны. С ростом напряженности щеточка становится более широ­кой, и точка на струе, где начинается ее разветвление, приближается к нижнему электроду. Расстояние между этой точкой и электродом обозначим l — далее оно нам по­надобится. Когда напряженность достигла ~ 2000 в/см, практически вся струя начиная от места выхода ее из стек­лянного наконечника (он был немного выше нижнего элект­рода) превращалась в ветвистый фонтан из мелких капель.

Почему? Почему ранее, при небольшой напряженности поля, мелкие капли объединялись в крупную, а при боль­шой напряженности они сочли для себя целесообразным дробиться на еще более мелкие и разлетаться во все сторо­ны сверкающим фонтанчиком? Или, иными словами, по­чему в сильном электрическом поле капля на кончике струи утрачивает устойчивость и разрывается на множество мелких?

Разрыв капли происходит под влиянием электрическо­го растягивающего давления Ре . Оно побеждает лапласовское, которое, сжимая каплю, стремится сохранить ее.

Электрическое давление, возникающее в электрическом поле, подобно тому, которое разрывает тяжелые атомные ядра, обладающие большим зарядом. Отличие лишь в том, что заряженное ядро находится в поле, которое создано его собственным зарядом, а дробящаяся водяная капля находится в поле, созданном и поддерживаемом внешним источником.

После сказанного легко оценить величину электричес­кого давления. Имея в виду каплю радиуса R , несущую заряд q , можно определить силу, которая разрывает каплю,

 

В этой формуле все разумно: напряженность электри­ческого поля, необходимая для разрыва струи, оказыва­ется тем больше, чем меньше размер капли и чем больше величина поверхностного натяжения, сжимающего ее. Однако, чтобы эту формулу сопоставить с результатами опыта, необходимо учесть, что напряженность Ек отлича­ется от Е0 — напряженности между пластинами конденса­тора. Так как вблизи капли, сидящей на струе, силовые линии поля сгущаются, Ек будет больше, чем Е0.

Расчет показывает, что Ек = Е0 . Удобнее эту формулу перепи­сать в виде:

 

Последняя формула естественно объясняет понижение точки, в которой начинается распад капель, с ростом на­пряженности :

l ≈ 1/Eo

Получается своеобразный высоковольтный вольтметр. С его помощью можно опреде­лить напряженность, измерив расстояние l.

Вот теперь, пожалуй, опыт Рэлея — Френкеля понят, и обе кинограммы истолкованы.


Кто творит радугу?

Радугу творят водяные капли: в небе — дождинки, на поливаемом асфальте — капельки, брызги от водяной струи. Радугу могут сотворить и капли-росинки, кото­рыми осенним утром покрыта низко скошенная трава.

 

Вначале поговорим о «геометрии» радуги, т. е. о форме и расположении разноцветных дуг, а затем — о «физике» ра­дуги, о том, какие физические законы определяют ее фор­му и цвета.

«Геометрия радуги» в небе описана давным-давно. Обыч­но в небе видны две разноцветные концентрические дуги — одна яркая, а другая побледнее. Каждая дуга является честью окружности, центр которой лежит на прямой, про­веденной через солнце и глаз наблюдателя. Эта прямая — своеобразная ось, и вокруг нее изогнута радуга. Глаз на­блюдателя оказывается в вершине конусов, в основании которых — разноцветные дуги. Образующие этих кону­сов с осью соответственно составляют углы 42 и 51°. Солн­це светит из-за спины наблюдателя, и, чем ниже оно опу­скается к горизонту, тем выше поднимается вершина ра­дуги. В тот момент, когда солнце касается горизонта, мож­но увидеть полукруглую радугу — большей она никогда не бывает. Если же солнце поднимется над горизонтом более чем на 42°, вершина яркой радуги уйдет за горизонт.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Капля"

Книги похожие на "Капля" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Яков Гегузин

Яков Гегузин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Яков Гегузин - Капля"

Отзывы читателей о книге "Капля", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.