» » » Яков Гегузин - Капля


Авторские права

Яков Гегузин - Капля

Здесь можно скачать бесплатно "Яков Гегузин - Капля" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство «НАУКА», год 1973. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Капля
Издательство:
«НАУКА»
Жанр:
Год:
1973
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Капля"

Описание и краткое содержание "Капля" читать бесплатно онлайн.








Почему же капли не «примерзают» к поверхности кри­сталла? Это, действительно, странно — ведь жидкость великолепно смачивает собственную твердую фазу. Пом­ните рассказы о капле ментола, осушенной ментоловой иглой, и о первой капле талой воды, рожденной снегом? Капле на поверхности горячего кристалла полагалось бы растечься, а не оставаться сферической! Видимо, между жидкой каплей и поверхностью кристалла имеется тончай­шая газовая прослойка, и капля существует на ней, буду­чи как бы подвешенной в воздухе.

И еще: появлению жидкой капли на поверхности испаряющегося или кристаллизующегося из газовой фазы кри­сталла паратолуидина могут способствовать пары воды в атмосфере, окружающей кристалл. С водой паратолуидин образует сплав, который становится жидким при температуре ниже 44 °С. Паратолуидиновой капле, со­держащей немного воды, проще быть жидкой при темпе­ратуре ниже 44° С, чем капле чистого паратолуидина.

На второй вопрос ответ получился некатегорическим, но вполне правдоподобным.

Теперь о расширении шлейфов. Вот здесь полная яс­ность. Расширяются они потому, что шлейф создается не только движущейся каплей, но и одиночными атомами, которые при росте кристалла оседают на боковых торцах положительного, а при испарении кристалла отрываются от боковых торцов отрицательного шлейфа. Чем дальше участок бокового торца шлейфа от движущейся капли, тем больше времени с ним взаимодействуют одиночные атомы и тем шире он.

Закон сохранения вещества в процессе создания каплей шлейфа, конечно же, не нарушается. Создавая положи­тельный шлейф, капля живет дольше, чем можно было ожидать, по причине очевидной: она себя расходует на создание шлейфа, но при этом питается за счет тех атомов, которые оседают на ней из паровой фазы. Вопрос о за­коне сохранения вещества в нашем перечне был послед­ним, и ответом на него можно закончить рассказ о каплях со шлейфом.


Капельный след


Английский ученый лауреат Нобелевской премии Чарлз Томас Рисс Вильсон всю свою долгую творческую жизнь посвятил исследованию капель. Ему было 25 лет, когда он впервые попал в обсерваторию на вершине снежной горы Бен-Невис в Шотландии. Там он наблюдал грозу: тяжелые облака, сверкающие молнии, грозовые разряды, вершина Бен-Невиса в ореоле разноцветных колец, дви­жущихся и меняющих окраску. Потрясенный красотой и загадочностью виденного, Вильсон решает посвятить се­бя исследованиям в области физики атмосферных явле­ний. А это значит, что надо начинать с изучения капель, образующих облака.

В судьбе капель его интересовало все: как они зарож­даются и растут, как испаряются, как меняются под влия­нием различных внешних обстоятельств.

О творческом труде Вильсона, длившемся 65 лет, мо­жет быть, никто бы и не узнал, кроме метеорологов и уз­ких специалистов по физике дождя и облаков, если бы в 1911 году он не создал прибор, в котором благодаря каплям можно сделать видимыми траектории элементар­ных заряженных частиц. Этому прибору — он называется камерой Вильсона — суждено было сыграть исключи­тельную роль в развитии физики в XX веке.

Первые исследования Вильсона были посвящены изуче­нию механизма зарождения капель. У него были талант­ливые и искусные предшественники. Английский физик Айткен еще в 1870 г. поставил опыты по образованию ка­пель в изобретенной им туманной камере. Конструкция этой камеры элементарна: цилиндрический стеклянный стакан с легкоподвижным и тщательно притертым порш­нем, на дне стакана слой воды, над водой под поршнем влажный воздух. При быстром поднятии поршня в стака­не образуется туман из множества капелек. Возникают они по причине очевидной: при быстром расширении воз­дух немного охлаждается, так как для того, чтобы расши­риться в пустой объем, освободившийся вследствие сме­щения поршня, воздуху надо потратить часть своей энер­гии. То количество влаги, которое до расширения насы­щало воздух под поршнем, после расширения, когда воз­дух охладился, частично оказывается в избытке и выпа­дает в виде отдельных капелек, образуя туман. Айткен  экспериментировал при очень небольших расширениях камеры и показал, что если воздух свободен от пыли или крупинок соли (их особенно много в атмосфере над по­верхностью моря), то в момент расширения туман не воз­никает. Для его образования необходимы посторонние центры конденсации капель — «ядра Айткена».

Вильсон продолжил опыты Айткена, воспользовавшись его туманной камерой. Он экспериментировал много, тща­тельно, широко изменяя внешние условия, при которых капли могут или не могут зарождаться. Проследим шаг за шагом логику экспериментов Вильсона.

Шаг первый. Повторение опытов Айткена, сопровождае­мое тщательным измерением коэффициента скачкообраз­ного расширения камеры, т. е. отношения объема камеры после расширения к ее начальному объему (К). Резуль­тат: Айткен прав до значений К ≤ 1,252.

Шаг второй. Исследования формирования капель при значениях К 1,252 в воздухе, тщательно очищенном от посторонних примесей. Результат: до значения К = 1,370 в воздухе образуются крупные капли тумана, которые дождем падают на дно камеры; при К = 1,370, когда, как оказывается, пересыщение становится восьмикрат­ным, процесс резко изменяется, в камере возникает гу­стой, молочный, плотный туман. Предотвратить этот про­цесс оказалось невозможным. При таком огромном пере­сыщении центрами конденсации становятся комплексы случайно столкнувшихся молекул влаги. «Ядра Айткена» для этого не нужны.

Шаг третий. Он был сделан в 1896 г., вскоре после того, как Рентген открыл γ-лучи. Сквозь туманную камеру про­пускались рентгеновские лучи. Результат: густой туман возникает и при К < 1,370. Догадка: возможно, ионы, которые образуются под влиянием рентгеновского облу­чения, являются центрами конденсации. Проверочный опыт: в облучаемом пространстве камеры установлены электроды, к которым подана разность потенциалов. Электрическое поле должно убрать ионы, и, если они яв­ляются центрами конденсации, образования капель не должно происходить. Опыт закончился предполагаемым результатом, подтвердил догадку.

Логическая строгость мысли и тщательность экспери­ментатора привели к крупному открытию. Его сущность можно сформулировать так: заряженные ионы являются  центрами конденсации капель в пространстве, пересыщен­ном влагой.

А затем последовало еще множество шагов. Каждый шаг — это сомнение, радостное и изнуряющее экспери­ментирование, тщательность, сопровождаемая ухищре­ниями, годы кропотливого труда, посвященные познанию капли. Было выяснено, что диаметр капель в густом ту­мане имеет размер около 0,1 микрона, что в 1 см3 тума­на около 100 000 000 капель, что на положительно заряженных ионах капли образуются легче, чем на отрицатель­но заряженных.

И, наконец, в 1911 году — решающий шаг.

Вильсон исходил из такого предположения: если в объе­ме камеры ионы распределены не хаотически, а закономер­но, возникшие на них капли должны образовать не моло­ко равномерного тумана, а определенный ансамбль, пов­торяющий закономерность расположения ионов в объеме. Если в камере пролетит ионизирующая частица и на сво­ем пути оставит цепочку ионов, капли, образующиеся на них при расширении камеры, составят капельный след. Частицу видеть нельзя, но можно увидеть путь, вдоль которого она пролетела. Был поставлен опыт: в камере помещался источник α-частиц, и в момент расширения объема камеры отчетливо наблюдались треки — капель­ные следы, вдоль которых α-частицы пролетели.

Видимо, в действительности все обстояло не так последовательно, строго и организованно, как здесь это описа­но: мысль — эксперимент — успех! Видимо, цепочка не была такой прямой. Путь к успеху лежал через случай­ные наблюдения, которые ускользнули бы от невнима­тельного глаза, через неудачные попытки воспроизвести случайное наблюдение, через минуты и дни отчаяния, когда казалось, что того случайного наблюдения в дей­ствительности и не было.

Семнадцать лет Вильсон изучал образование капель в своей лаборатории один, с глазу на глаз с туманной каме­рой, а после 1911 года камера Вильсона стала достоянием всего человечества: вильсоновские камеры разнообраз­ных усовершенствованных конструкций используются почти во всех лабораториях мира, изучающих строение вещества.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Капля"

Книги похожие на "Капля" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Яков Гегузин

Яков Гегузин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Яков Гегузин - Капля"

Отзывы читателей о книге "Капля", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.