» » » Яков Гегузин - Капля


Авторские права

Яков Гегузин - Капля

Здесь можно скачать бесплатно "Яков Гегузин - Капля" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство «НАУКА», год 1973. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Капля
Издательство:
«НАУКА»
Жанр:
Год:
1973
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Капля"

Описание и краткое содержание "Капля" читать бесплатно онлайн.








Можно рассказать об этом по-другому. Выпуклая по­верхность капли создает давление, которое прижимает ее к плоскости. Это так называемое капиллярное (лапласовское) давление — мы уже с ним встречались. Участок же поверхности капли, который граничит с твердой под­ложкой, такого давления не создает: оно должно быть пропорциональным 1/R, а радиус кривизны плоского участка

поверхности капли равен бесконечности, и, значит, давле­ние равно нулю. К одному участку поверхности давление приложено, к другому — не приложено, а это неудобно. Капля, подвешенная в невесомости, таких неудобств не испытывает.

Два разных рассказа об одном и том же явлении можно проиллюстрировать двумя опытами. Опыт первый иллю­стрирует первый рассказ, опыт второй — второй.

Опыт первый. На полированной поверхности стеклян­ной пластинки, сухой и чистой, располагается тонкий лепесток полимерной пленки. Хорошо, если его толщина будет не более 5 микрон. На поверхность лепестка надо посадить каплю воды и наблюдать за происходящим. Кап­ля начнет изгибать пленку, стремясь завернуться в нее. Отчетливо это иллюстрирует кинограмма. Работает при этом та сила, которая на рисунке обозначена жирной стрелкой. Если бы полимерная пленка абсолютно подчи­нялась воле капли, произошло бы следующее: капля при­няла бы форму сферы, равномерно покрыв себя слоем поли­мерной пленки. В действительности же, так как плоская пленка не может приобрести сферическую форму, капле не удается полностью в нее завернуться, но все же устра­ивается она при этом более удобно, чем на плоской поверх­ности.

Стремление капли завернуться в пленку мы объяснили, сославшись на силу, изображенную жирной стрелкой. Можно и в иных словах и понятиях описать процесс, за­печатленный на кинограмме, смонтированной из кадров фильма, в котором заснята кинетика заворачивания водя­ной капли в пленку. Из рисунка следует, что α21 + α10•  cos φ = а20. Так как cos φ0, то α21 < α20 и, следова­тельно, заведомо меньше, чем сумма α10 + α20. Это оз­начает, что выгодно вместо двух свободных поверхностей капли и пленки создать одну поверхность, вдоль которой капля и пленка соприкасаются. А для этого капле следует в пленку завернуться, что она и делает.

 

Последовательность моментов ваворачивания водяной капли в лепесток из полимерной пленки


Внимательно присмотритесь к каплям, которые после дождя остались на поверхности тонких листиков, и вы увидите, что вблизи капель листики изогнуты значитель­но больше, чем это могло бы произойти лишь под влиянием их веса. Капли явно гото­вили себе «постель» поудоб­нее.

Опыт второй был постав­лен чешскими физиками. На полированную поверхность массивного кристалла железа наносилась капля расплав­ленного свинца. Железо было раскалено до температуры более 1000° С, и поэтому свин­цовая капля оставалась жид­кой. Кристалл железа — не полимерная пленка, и изо­гнуть его вокруг себя капля не может. Поэтому поступает она иным способом: выкапы­вает под собой ямку такой формы, чтобы вдоль контуров капли все три силы скомпенсировались так, как показано на рисунке. Эта «удобная» ям­ка должна иметь такую фор-

му, чтобы давление, обусловленное изогнутой поверхностью жидкий свинец — воздух, было в точности равно тому давлению, которое обусловлено искривленностью поверх­ности жидкий свинец — твердое железо, т. е. дна ямки.

Равенство двух этих давлений означает, что α10/R10= α12/R12   . Итак, давления равны, а кривизна двух поверхностей различна, потому что различны соответствующие поверхностные энер­гии.

 

Взаимное расположение сил, действующих на контур капли, которая «удобно устроилась» на твердой поверхности


Выкопав под собой ямку, капля как бы перенеслась в невесомость — как и в невесомости, капиллярное давление оказалось одинаковым вдоль всей поверхности, огра­ничивающей каплю.

Естественно возникает вопрос: каким образом капля вы­копала ямку? Ответим на него. Вначале, когда капля была расположена на плоской поверхности железа, она прижи­малась к нему тем давлением, которое обусловлено искрив­ленностью поверхности свинец — воздух. Под влиянием этого давления железо из-под свинцовой капли перемещалось в области вокруг нее. Перемещалось в процессе диф­фузии поатомно, атом за атомом — опыт ставился при высокой температуре, когда диффузия в железе происхо­дит достаточно активно.

Надо подчеркнуть, что в описанном опыте капиллярное давление, которое обусловливает перемещение железа из-под свинцовой капли, существенно больше давления, обусловленного ее весом, так как капля свинца была очень «маленькая» в том смысле, в каком мы об этом гово­рили в очерке об опыте Плато.

Итак, в названии очерка все точно. Попав на твердую поверхность, капля действительно готовит себе удобную постель: либо изгибает подложку, если ей это удается, либо выкапывает для себя удобную ямку.


Раздавленная капля


Аналогия рождается на перекрестках памяти и раздумий и иногда связывает воедино образы и события, состоящие в очень дальнем родстве. Неожиданная аналогия, даже от­даленная или поверхностная, родившись вовремя, может помочь исследователю выйти из тупика и осветить путь к решению.

Когда-то, в конце 40-х годов, я участвовал в экспери­ментальной работе. Ее цель заключалась в определении физических характеристик вещества, которое ранее не исследовалось. Ранее этого вещества в чистом виде просто не было — ценой больших усилий его получили химики.

На первый взгляд задача совсем не новая, и решать ее следует, двигаясь путями, проторенными многими исследо­вателями, изучавшими физические характеристики других веществ. Наша задача, однако, была усложнена тем, что экспериментировать мы могли лишь с микроскопическими крупинками. Каждая крупинка весила около одной мил­лионной грамма, а размер ее — несколько десятков мик­рон. Количеством крупинок мы были очень ограничены — химики их добывали с трудом.

Группа, в которой я работал, должна была определить температуру плавления и поверхностное натяжение веще­ства в жидкой фазе.

 В обычном «макроскопическом» эксперименте температу­ра плавления измеряется легко и просто: в образец по­гружают термометр и следят за тем, как меняются его показания по мере нагрева образца. Температура посте­пенно возрастает. Когда она достигнет некоторого значе­ния, ее рост приостановится в связи с тем, что тепло, при­текающее к образцу, начнет расходоваться не на нагрев, а на процесс расплавления. Эта температура и является тем­пературой плавления. Когда же масса крупинки — одна миллионная грамма, термометр внедрить в нее невозмож­но и для определения температуры плавления следует ис­кать обходные пути.

Один из участников нашей группы, у которого за пле­чами были годы работы в литейном цехе, предложил совсем неожиданное решение задачи. Его память храни­ла воспоминание, родившее аналогию. В годы войны, ска­зал он, я вел плавку одновременно в нескольких одина­ковых тигельных электропечах. Загружал их алюмини­евыми чушками и, чтобы определить начало расплавления шихты в печи, не забираясь на ее загрузочную площадку, в каждую печь между чушками вертикально устанавливал длинный металлический стержень, который был виден над печью. В момент начала плавления стержень наклонялся — это служило сигналом.

Это воспоминание подсказало идею, с помощью которой можно было измерить температуру плавления крупинки. Опыт заключался в следующем. На тщательно отполиро­ванной пластинке кварца располагалась крупинка. Свер­ху ее накрывали другой пластинкой кварца, которая, ка­саясь крупинки, образовывала некоторый угол с первой пластинкой. Это устройство нагревали, и в тот момент, когда крупинка расплавлялась, верхняя пластинка раз­давливала образовавшуюся каплю и угол между пластин­ками скачкообразно уменьшался. Чтобы надежнее этот момент зарегистрировать, на внешнюю поверхность верх^ ней пластинки нанесли зеркальное покрытие и следили за тем, как отражаемый от нее луч скачком смещается. Пластинка, меняющая свое положение, была подобна ме­таллическому стержню, который наклонялся, свидетель­ствуя о начале процесса плавления. Так как масса кру­пинки пренебрежимо мала по сравнению с массой квар­цевых пластинок, между которыми она зажата, температу­ра крупинки равна температуре пластинок и, следова­тельно, измерить ее весьма просто.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Капля"

Книги похожие на "Капля" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Яков Гегузин

Яков Гегузин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Яков Гегузин - Капля"

Отзывы читателей о книге "Капля", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.