Георг Вильгельм Фридрих Гегель - Учение о бытии

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Учение о бытии"
Описание и краткое содержание "Учение о бытии" читать бесплатно онлайн.
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)
Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:
1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);
1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).
Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:
1916 г.: Предисловие к русскому переводу, стр. VII–XXII;
1929 г.: От издательства, стр. VII–XI.
В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.
Особенности электронного издания:
1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).
2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.
3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.
4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).
5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).
6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).
7. Греческие слова и выражения приводятся без диакритических знаков.
8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).
С опущением постоянных величин связано такое же замечание по поводу названий дифференцирования и интегрирования, какое ранее было сделано по поводу выражений конечного и бесконечного, а именно что в их определении заключается скорее противоположность того, что выражается этими словами. Дифференцирование означает положение разностей; но через дифференцирование, напротив, уравнение приводится к меньшему объему, опущением постоянной величины устраняется один из моментов определенности; как было указано, корни переменных величин приравниваются, следовательно разность их снимается. При интегрировании же постоянная величина снова должна быть прибавлена; уравнение тем самым интегрируется, но в том смысле, что ранее снятая разность корней снова восстановляется, т. е. что положенное равным дифференцируется. Обычный способ {199}выражения приводит к тому, что существенная сторона дела остается в тени, и все сводится к подчиненной точке зрения, чуждой этой стороне дела, точке зрения отчасти бесконечно малой разности, приращения и т. п., отчасти просто различия между данною и производною функциею, без принятия во внимание специфического, т. е. качественного различения.
Другая главная область, к которой применяется дифференциальное исчисление, есть механика; о значении различных степенных функций, которые получаются из элементарных уравнений ее предмета, движения, было уже попутно упомянуто; я прямо принимаю их здесь. Уравнение, т. е. математическое выражение ложно равномерного движения с=s/t или s=ct, в котором пройденные пространства относятся к протекшим временам, как эмпирическая единица с, означающая величину скорости, не дает никакого повода к дифференцированию; коэффициент с уже вполне определен и известен, и относительно него не может иметь места никакое дальнейшее степенное развитие. Как анализируется s=at2, уравнение падения тел, было уже указано; первый член анализа ds/dt=2at понимается и словесно и реально так, что он должен быть членом суммы (каковое представление мы уже устранили), одною частью движения, которому должна быть присуща сила инерции, т. е. ложно равномерной скорости, таким образом, что в бесконечно малые промежутки времени движение совершается равномерно, а в конечные промежутки времени, т. е. в действительности, неравномерно. Конечно f's=2at; значение а и t известно, равно как тем самым положено определение скорости равномерного движения; так как а=s/t2, то вообще 2at=2s/t; но тем самым мы ни мало не приобретаем дальнейшего знания; лишь ложное предположение, что 2at есть часть движения, как суммы, дает здесь ложную видимость физического предложения. Самый множитель а, эмпирическая единица — определенное количество, как таковое — приписывается тяготению; но если пускается в ход категория силы тяготения, то следовало бы скорее сказать, что именно целое s=at2 есть действие или, правильнее, закон тяготения. Тому же соответствует и выведенное из ds/dt=2at предложение, что если бы прекратилось действие тяготения, то тело со скоростью, приобретенною в конце своего падения, прошло бы пространство вдвое большее пройденного во время, равное времени его падения. Здесь мы встречаем и саму для себя превратную метафизику; конец падения или конец части времени, в которое падает тело, есть всегда сам еще часть времени; если бы он не был такою частью, то наступил бы покой и следовательно — отсутствие скорости; скорость может быть измеряема лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же, наконец, и в других отраслях физики, которые вовсе не имеют дела с движением, например относительно света (за исключением того, {200}что называется его распространением в пространстве) и количественных определений цветов, прибегают к приложению дифференциального исчисления, и первая производная функция квадратной функции именуется и здесь скоростью, то на это следует смотреть как на еще более неуместный формализм вымышляемого существования.
Движение, изображаемое уравнением s=at2, мы находим, говорит Лагранж, на опыте в падении тел; простейшее следующее движение должно бы было иметь уравнение s=ct3, но в природе такого движения не оказывается; мы не знаем, что мог бы означать коэффициент с. Как бы то ни было, есть однако движение, уравнение которого есть s3=at2 — кеплеров закон движения тел солнечной системы; вопрос о том, что должна означать здесь первая производная функция 2at/3s2, и дальнейшее прямое исследование этого уравнения через дифференцирование, нахождение законов и определений этого абсолютного движения с той исходной точки зрения должно бы конечно явиться интересною задачею, в решении которой анализ проявил бы себя в достойном блеске.
Таким образом для себя приложение дифференциального исчисления к элементарным уравнениям движения не представляет никакого реального интереса; формальный же интерес обусловливается общим механизмом исчисления а. Но иное значение получает разложение движения в отношении определения его траектории; если последняя есть кривая, и ее уравнение содержит высшие степени, то требуется переход от прямолинейных функций возвышения в степень к самим степеням, и поскольку первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени, с устранением времени, то этот фактор должен быть ограничен теми низшими функциями, из коих могут быть получены эти уравнения линейных определений. Эта сторона затрагивает интерес другой части дифференциального исчисления.
Предыдущее изложение имело целью выяснить и установить простое специфическое определение дифференциального исчисления и привести тому некоторые элементарные примеры. Это определение оказалось состоящим в том, что для уравнения степенной функции находится коэффициент, так наз. первая (производная) функция, и что то отношение, которое она собою представляет, обнаруживается в моментах конкретного предмета, причем полученным таким образом равенством между обоими отношениями определяются сами эти моменты. Равным образом надлежит по поводу принципа интегрального исчисления вкратце рассмотреть, что получается для его специфического конкретного определения из его приложения. Взгляд на это исчисление упрощается и исправляется уже тем, что оно не признается более методом суммирования, как оно было названо в противоположность дифференцированию, существенным ингредиентом которого считается приращение, чем оно вводилось в существенную связь с формою ряда. Задача интегрального исчисления прежде всего столь же теоретическая или скорее {201}формальная, как и дифференциального исчисления, но при этом обратная последнему; в первом случае исходят от функции, которая рассматривается, как производная, как коэффициент первого возникающего через развитие еще неизвестного уравнения члена, и через нее должна быть найдена первоначальная степенная функция; та функция, которая в естественном порядке развития рассматривается как первоначальная, здесь имеет характер производный, а та, которая ранее считалась производною, есть здесь данная или вообще первоначальная. Формальная сторона этого действия является уже предрешенною дифференциальным исчислением, так как последнее вообще установляет переход и отношение первоначальной функции к возникающей путем ее развития. Если при этом отчасти для того, чтобы подставить ту функцию, от которой должно исходить, отчасти для осуществления перехода ее к первоначальной функции во многих случаях оказывается необходимым прибегнуть к форме ряда, то нужно прежде всего твердо помнить, что эта форма, как таковая, не имеет никакой непосредственной связи с собственным принципом интегрирования.
Но другою стороною задачи этого исчисления является с точки зрения формального действия его приложение. Последнее и является само задачею узнать — в вышеуказанном смысле — то значение, которое свойственно первоначальной функции, рассматриваемой с точки зрения данной функции, принимаемой за первую (производную) и относимой к особому предмету. Само по себе это учение могло бы, по-видимому, войти вполне в состав дифференциального исчисления; но есть дальнейшее обстоятельство, вследствие которого дело оказывается не так просто. Именно поскольку в этом исчислении оказывается, что в производной функции уравнения кривой получается линейное отношение, то тем самым признается, что интегрирование этого отношения дает уравнение кривой в отношении абсциссы и ординаты; или если дано уравнение кривой поверхности, то дифференцирование уже научает значению производной функции такого уравнения, именно что в этой функции ордината представляет функцию абсциссы, стало быть, уравнение кривой линии.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Учение о бытии"
Книги похожие на "Учение о бытии" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Георг Вильгельм Фридрих Гегель - Учение о бытии"
Отзывы читателей о книге "Учение о бытии", комментарии и мнения людей о произведении.