Владислав Пристинский - 100 знаменитых изобретений

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "100 знаменитых изобретений"
Описание и краткое содержание "100 знаменитых изобретений" читать бесплатно онлайн.
Вся история человечества – это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена – иначе она вся разрушится. . В этой книге рассказывается о ста знаменитых изобретениях цивилизации – тех, без которых на планете Земля не было бы жизни. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда – она будет лишь удлиняться.
Применение каменного угля сдерживалось высоким содержанием серы в нем. Это придавало чугуну повышенную хрупкость. Проблему помогли решить пудлинговые печи. В них металл не соприкасался с коксом, а нагревался теплом, отраженным от свода. Для более равномерного выгорания углерода металл постоянно перемешивали, что и дало название процессу («puddle» по-английски – перемешивать).
Следующим шагом в развитии доменного процесса стал нагрев воздуха, подаваемого в печь. Эта идея, предложенная шотландцем Нильсоном, первоначально была встречена в штыки. Тогда полагали, что чем холоднее воздух, тем лучше идет плавка. Внедрение этого изобретения позволило сократить расход кокса на треть, а выплавку чугуна увеличить в полтора раза. Идею Нильсона развил английский инженер Каупер. В 1857 г. он предложил оригинальную конструкцию доменного воздухонагревателя (каупера), позволявшего нагревать воздух до 600–700 °C. Современные кауперы позволяют нагреть воздух перед подачей в печь до 1200 °C.
К середине XIX века существовавшие тогда пудлинговый процесс и кричный передел не удовлетворяли требования металлургов из-за продолжительности, трудоемкости и низкого качества металла, а тигльный способ, позволявший получать хорошую сталь, был дорогим и применялся мало.
В то время даже лучшие мастера руководствовались в своей работе исключительно опытом предшественников и своим собственным. О процессах, происходящих в металле при плавке и обработке, они практически ничего не знали, поэтому сознательно управлять ими не могли. Это не позволяло совершенствовать железоделательное производство.
Великий русский ученый-металлург Павел Петрович Аносов задался целью превратить металлургию железа из ремесла в науку. После окончания в 1817 г. Горного корпуса в Петербурге он получил назначение на заводы Златоустовского горного округа на Урале. Экспериментируя с различными процессами получения стали, Аносов сумел получить сталь высокого качества, сократив продолжительность выплавки в несколько раз. Ему удалось получать сталь непосредственно из чугуна. Заветной мечтой русского металлурга была разгадка тайны булата. На пути к ее раскрытию Павел Петрович провел тысячи опытов с различными добавками: кремнием, марганцем, алюминием, титаном, даже с золотом и платиной. В конце концов молодой инженер пришел к выводу, что булат – это только железо и углерод. А опыты с добавками других металлов в железо положили начало металлургии легированных сталей.
Для исследования структуры металла Аносов впервые в мировой практике применил микроскоп, заложив основы металлографического анализа. В 1833 г. был выкован первый булатный клинок, перерубавший и гвозди, и тончайший газовый платок. Итог своим многолетним трудам Аносов подвел в своей монографии «О булатах».
Переворот в производстве литой стали призошел во второй половине XIX века. В 1856 г. Генри Бессемер взял патент на изобретение – конвертер, в котором осуществлялась продувка воздухом расплавленного чугуна, что позволяло превращать чугун в сталь без дополнительного нагрева.
В 1864 г. француз Пьер Мартен разработал новый способ выплавки стали, названный затем в его честь. Несмотря на то, что мартеновский процесс был более продолжительным, чем бессемеровский, он обеспечивал более высокое качество стали. Причем сырьем для него могли служить металлолом и отходы конвертерного производства. Плавка в мартене легко контролировалась, и ею можно было управлять. К началу XX в. мартеновский способ по объемам производства превзошел бессемеровский.
Большой вклад в исследование процессов, происходящих в стали, внес русский ученый Д. К. Чернов. Он исследовал нагрев и охлаждение стали, пытаясь найти оптимальный режим термообработки для различных ее сортов. Опыты Чернова помогли разработать способ получения требуемой структуры стали и положили начало новой науке – металловедению.
В начале XIX в. русский ученый Петров выдвинул идею выплавки железа в электропечи. В 1853 г. во Франции был получен первый патент на электропечь. В 1879 г. Вильгельм Сименс построил первую электропечь. Но получаемый в ней металл содержал большое количество примесей. В 1891 г. Н. Г. Славянов осуществил первую плавку стали в тигльной печи, снабженной электродами. В 1892 г. Анри Муассан создал лабораторную электропечь, температура в которой достигала 4000 °C. Благодаря производству дешевой электроэнергии на гидроэлектростанциях были построены электропечи в Швейцарии, Швеции, Германии, США. Высокая температура (до 5000 °C), а также восстановительная атмосфера позволяли получить полностью очищенную от примесей сталь. Именно появление электропечей дало возможность производить сталь с добавками других элементов – хрома, ванадия, вольфрама, титана и др. – легированную сталь.
В XX веке идет работа над заменой доменного процесса. Это связано с удорожанием производства кокса и повышением требований к охране окружающей среды. Еще Д. К. Чернов предложил конструкцию печи, выплавлявшей не чугун, а железо и сталь. В 60-е годы XX века появились комбинаты, сырьем для которых служат окатыши – небольшие «орешки» из железорудного концентрата. В установках прямого восстановления, работающих на природном газе, из окатышей извлекают кислород. На второй стадии в мощных дуговых печах выплавляется высококачественная электросталь, очищенная от примесей. Эта технология позволяет обходиться без кокса, не загрязнять окружающую среду отходами производства.
Передовой технологией является и непрерывная разливка стали. На смену сложной многоступенчатой схеме получения стальных слитков и превращения их в прокатную заготовку пришла единственная операция. Она позволяет превратить расплавленный металл в полуфабрикат для проката. Непрерывная разливка стали намного упростила технологию, что позволило снизить производственные затраты. При этом сократились потери металла, повысилось качество стали. Кроме того, улучшились условия труда и повысилась возможность автоматизации процесса разливки.
В киевском Институте электросварки им. Патона в 1952 г. был разработан способ электрошлакового переплава металлов. Он позволяет получить слитки больших размеров и сложной конфигурации.
Еще одним эффективным методом получения металлических изделий является порошковая металлургия. Она позволяет получать изделия путем прессования и спекания металлических порошков.
Постоянное развитие технологий производства сплавов на основе железа позволяет получать материалы, соответствующие современным требованиям промышленности. Поэтому можно с уверенностью сказать, что железный век человечества продолжается.
Интегральная микросхема
Около полувека в радиотехнике царили электронные лампы. Они были хрупкими, большими, ненадежными, потребляли много энергии и выделяли массу тепла. Появившиеся в 1948 г. транзисторы были надежнее, долговечнее, потребляли меньше энергии, выделяли меньше тепла. Они дали возможность разрабатывать и создавать сложные электронные схемы из тысяч составляющих: транзисторов, диодов, конденсаторов, резисторов. Но это усложнение породило проблему, заключавшуюся в дороговизне ручной пайки многочисленных соединений. Это занимало много времени и снижало общую надежность устройств. Требовался более надежный и рентабельный способ соединения электронных компонентов схем.
Кроме того, работу большинства полупроводниковых приборов обеспечивает тонкий поверхностный слой толщиной в несколько микрометров. Остальная часть кристалла играет роль основания (подложки), необходимого для прочности транзистора или диода.
При изготовлении транзисторов в них размещали три тонких слоя с р– и n-проводимостью, создав в нужных местах пленочные металлизированные контакты для соединения с внешними элементами схемы и диэлектрические пленки, изолирующие каждый контакт. Технология нанесения полупроводниковых металлизированных и диэлектрических пленок послужила основой создания пленочных интегральных микросхем.
Одним из решений проблемы уменьшения количества соединений в электронных схемах стало создание микромодульной технологии. Она поддерживалась Министерством обороны США. Идея состояла в том, что все компоненты должны иметь одинаковые размеры и форму и содержать выводные контакты для межэлементных соединений. При создании схем модули объединялись в сложные объемные структуры с меньшим количеством проводных соединений.
Среди компаний, занимавшихся созданием микромодульных схем, была «Texas Instruments». Один из ее сотрудников, Дж. Килби, считал, что микромодуль не сможет решить проблему уменьшения числа соединений в сложных схемах. Он начал искать другое решение и пришел к выводу, что основу схемы должен составлять полупроводниковый материал. Пассивные элементы схемы (резисторы и конденсаторы) могли быть сделаны из того же материала, что и активные (транзисторы). Если все компоненты сделаны из одного материала, их можно соединить между собой, формируя законченную схему.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "100 знаменитых изобретений"
Книги похожие на "100 знаменитых изобретений" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Владислав Пристинский - 100 знаменитых изобретений"
Отзывы читателей о книге "100 знаменитых изобретений", комментарии и мнения людей о произведении.