» » » Александр Китайгородский - Физика для всех. Движение. Теплота


Авторские права

Александр Китайгородский - Физика для всех. Движение. Теплота

Здесь можно скачать бесплатно "Александр Китайгородский - Физика для всех. Движение. Теплота" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Наука, год 1974. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Физика для всех. Движение. Теплота
Издательство:
Наука
Жанр:
Год:
1974
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Физика для всех. Движение. Теплота"

Описание и краткое содержание "Физика для всех. Движение. Теплота" читать бесплатно онлайн.



Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.

Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.

Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.






Векторы используются для описания не только перемещений. Векторные величины встречаются в физике часто.

Рассмотрим, например, скорость движения. Скорость есть перемещение за единицу времени. Раз перемещение – вектор, то и скорость – вектор, смотрящий в ту же сторону. При движении по кривой линии направление перемещения все время изменяется. Как же ответить на вопрос о направлении скорости? Небольшой отрезок кривой направлен так же, как касательная. Поэтому перемещение и скорость тела в каждый данный момент направлены по касательной к линии движения.

Складывать и вычитать скорости по правилу векторов приходится во многих случаях. Необходимость в сложении скоростей возникает, когда тело участвует одновременно в двух движениях. Такие случаи нередки: человек идет по поезду и, кроме того, движется вместе с поездом; капля воды, стекающая по стеклу вагонного окна, движется вниз под действием веса и путешествует вместе с поездом; земной шар движется вокруг Солнца и вместе с Солнцем совершает движение по отношению к другим звездам. Во всех этих и других подобных случаях скорости складываются по правилу сложения векторов.

Если оба движения происходят вдоль одной линии, то векторное сложение превратится в обычное сложение, когда оба движения направлены в одну сторону, и в вычитание, когда движения противоположны.

А если движения происходят под углом? Тогда мы прибегнем к геометрическому сложению.

Если, переправляясь через быструю реку, вы будете держать руль поперек течения, вас снесет вниз. Лодка участвовала в двух движениях: поперек реки и вдоль реки. Суммарная скорость лодки показана на рис. 6.



Еще один пример. Как выглядит движение дождевой струи из окна поезда? Вы, наверное, наблюдали дождь из окон вагона. Даже в безветренную погоду он идет косо, так, как будто его отклоняет ветер, дующий в лоб паровозу (рис. 7).

Если погода безветренная, капля дождя падает вертикально вниз. Но за время падения капли вдоль окна поезд проходит изрядный путь, убегает от вертикали падения, поэтому дождь и кажется косым.



Если скорость поезда vп, а скорость падения капли vк, то скорость падения капли по отношению к пассажиру поезда получится векторным вычитанием vп из vк*4. Треугольник скоростей показан на рис. 7. Направление косого вектора указывает направление дождя; теперь ясно, почему мы видим дождь косым. Длина косой стрелки дает в выбранном масштабе величину этой скорости. Чем быстрее идет поезд и чем медленнее падает капля, тем более косыми покажутся нам дождевые струи.

Сила – вектор

Сила, так же как и скорость, есть векторная величина. Ведь она всегда действует в определенном направлении. Значит, и силы должны складываться по тем правилам, которые мы только что обсуждали.

Мы часто наблюдаем в жизни примеры, иллюстрирующие векторное сложение сил. На рис. 8 показан канат, на котором висит тюк. Веревкой человек оттягивает тюк в сторону. Канат натянут действием двух сил: силы тяжести тюка и силы человека.



Правило векторного сложения сил позволяет определить направление каната и вычислить силу его натяжения. Тюк находится в покое; значит, сумма действующих на него сил должна равняться нулю. А можно сказать и так – натяжение каната должно равняться сумме силы тяжести тюка и силы тяги в сторону, осуществляемой при помощи веревки. Сумма этих сил даст диагональ параллелограмма, которая будет направлена вдоль каната (ведь иначе она не сможет «уничтожиться» силой натяжения каната). Длина этой стрелки должна будет изображать силу натяжения каната. Такой силой можно было бы заменить две силы, действующие на тюк. Векторную сумму сил поэтому иногда называют равнодействующей.

Очень часто возникает задача, обратная сложению сил. Лампа висит на двух тросах. Для того чтобы определить силы натяжения тросов, вес лампы надо разложить по этим двум направлениям.

Из конца равнодействующего вектора (рис. 9) проведем линии, параллельные тросам, до пересечения с ними. Параллелограмм сил построен. Измеряя длины сторон параллелограмма, находим (в том же масштабе, в котором изображен вес) величины натяжений канатов.



Такое построение называется разложением силы. Всякое число можно представить бесконечным множеством способов в виде суммы двух или нескольких чисел; то же можно сделать и с вектором силы: любую силу можно разложить на две силы – стороны параллелограмма, – из которых одну всегда можно выбрать какой угодно. Ясно также, что к каждому вектору можно пристроить любой многоугольник.

Часто бывает удобным разложить силу на две взаимно перпендикулярные – одну вдоль интересующего нас направления и другую перпендикулярно к этому направлению. Их называют продольной и нормальной (перпендикулярной) составляющей силы.



Составляющую силы по какому-то направлению, построенную разложением по сторонам прямоугольника, называют еще проекцией силы на это направление.

Ясно, что на рис. 10

F2 = Fпрод2 + Fнорм2,

где Fпрод и Fнорм – проекция силы на выбранное направление и нормаль к нему.

Знающие тригонометрию без труда установят, что

Fпрод = F·cos α,

где α – угол между вектором силы и направлением, на которое она проецируется.

Очень любопытным примером разложения сил является движение корабля под парусами. Каким образом удается идти под парусами против ветра? Если вам приходилось наблюдать за парусной яхтой в этом случае, то вы могли заметить, что она движется зигзагами. Моряки называют такое движение лавированием.

Прямо против ветра идти на парусах, конечно, невозможно, но почему удается идти против ветра хотя бы под углом?

Возможность лавировать против ветра основывается на двух обстоятельствах. Во-первых, ветер толкает парус всегда под прямым углом к его плоскости. Посмотрите на рис. 11,а: сила ветра разложена на две составляющие – одна из них заставит воздух скользить вдоль паруса, другая – нормальная составляющая – оказывает давление на парус. Во-вторых, лодка движется не туда, куда ее толкает сила ветра, а туда, куда смотрит нос лодки.

Это объясняется тем, что движение лодки поперек килевой линии встречает очень сильное сопротивление воды. Значит, чтобы лодка двигалась носом вперед, надо, чтобы сила давления на парус имела бы составляющую вдоль килевой линии, смотрящую вперед.

Теперь рис. 11,б, на котором изображена идущая против ветра лодка, должен стать понятным вам. Парус устанавливают так, чтобы его плоскость делила пополам угол между направлением хода лодки и направлением ветра.

Для того чтобы найти силу, которая гонит лодку вперед, силу ветра придется разложить дважды. Сначала вдоль и перпендикулярно к парусу – имеет значение лишь нормальная составляющая, затем эту нормальную составляющую надо разложить вдоль и поперек килевой линии. Продольная составляющая и гонит лодку под углом к ветру.


Наклонная плоскость

Крутой подъем труднее преодолеть, чем отлогий. Легче вкатить тело на высоту по наклонной плоскости, чем поднимать его по вертикали. Почему так и насколько легче? Закон сложения сил позволяет нам разобраться в этих вопросах.

На рис. 12 показана тележка на колесах, которая натяжением веревки удерживается на наклонной плоскости. Кроме тяги на тележку действуют еще две силы – вес и сила реакции опоры, действующая всегда по нормали к поверхности, вне зависимости от того, горизонтальная поверхность опоры или наклонная.



Как уже говорилось, если тело давит на опору, то опора противодействует давлению или, как говорят, создает силу реакции.

Нас интересует, в какой степени тащить тележку вверх легче по наклонной плоскости, чем поднимать вертикально.

Разложим силы так, чтобы одна была направлена вдоль, а другая – перпендикулярно к поверхности, по которой движется тело. Для того чтобы тело покоилось на наклонной плоскости, сила натяжения веревки должна уравновешивать лишь продольную составляющую. Что же касается второй составляющей, то она уравновешивается реакцией опоры.

Найти интересующую нас силу натяжения каната T можно или геометрическим построением или при помощи тригонометрии. Геометрическое построение состоит в проведении из конца вектора веса P перпендикуляра к плоскости.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Физика для всех. Движение. Теплота"

Книги похожие на "Физика для всех. Движение. Теплота" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Китайгородский

Александр Китайгородский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Китайгородский - Физика для всех. Движение. Теплота"

Отзывы читателей о книге "Физика для всех. Движение. Теплота", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.