» » » Андрей Лапо - Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого


Авторские права

Андрей Лапо - Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого

Здесь можно скачать бесплатно "Андрей Лапо - Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого" в формате fb2, epub, txt, doc, pdf. Жанр: Химия, издательство Знание, год 1987. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Андрей Лапо - Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого
Рейтинг:
Название:
Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого
Автор:
Издательство:
Знание
Жанр:
Год:
1987
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого"

Описание и краткое содержание "Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого" читать бесплатно онлайн.



В книге рассказывается «о том, как устроена биосфера и что осталось от биосфер геологического прошлого». Показан основополагающий вклад В. И. Вернадского в учение о биосфере и о роли жизни в геологических процессах. Большое внимание уделяется новейшим научным открытиям, в частности удивительным оазисам жизни, обнаруженным в рифтовых зонах Мирового океана на глубине 1500—3000 м.

Автор: А. В. ЛАПО — кандидат геолого-минералогических наук, старший научный сотрудник Всесоюзного научно-исследовательского геологического института имени А. П. Карпинского в Ленинграде. Специалист в области геологии угольных месторождений, биогеохимии и общей экологии. Автор свыше 80 научных работ.






Живое вещество является довольно совершенным приемником солнечной энергии. Вернадский подсчитал, что если поверхность Земли составляет едва 0,0001% поверхности Солнца, то суммарная поверхность ассимиляционного аппарата растений — от 0,86 до 4,2%. Измерения, произведенные красноярскими биофизиками в конце 70‑х годов, подтвердили порядок величин, полученных В. И. Вернадским.

Еще совсем недавно солнечная энергия считалась единственным энергетическим источником всех биотических процессов. При этом считалось, что и хемоавтотрофы используют энергию, когда-то ранее ассимилированную фотоавтотрофами и в дальнейшем законсервированную в метабиосфере. Сейчас, однако, показано, что живое вещество с успехом может использовать и «первичную» эндогенную энергию: абиссальные рифтовые сгущения жизни, описанные в предыдущей главе, потребляют эндогенный сероводород и энергетически независимы от солнечного излучения. Масштабы этого новооткрытого приемника энергии пока трудно оценить, но факт остается фактом: живое вещество ассимилирует энергию из обоих источников, поступающих в биосферу, — космического и эндогенного. А в итоге, как четко сформулировал французский ботаник Г. Гегамян, «энергетический баланс планеты как космической системы зависит от живого вещества».

В «Путешествиях Гулливера» Дж. Свифта мимолетно описан член Великой Академии Лапуты, восемь лет разрабатывающий проект извлечения энергии из огурцов и хранения ее в герметически закупоренных склянках. Неизвестно, решил ли эту проблему лапутянский труженик науки, но человечество в течение тысячелетий, действительно, использовало исключительно энергию, заключенную в живом веществе (правда, не в огурцах, а в дровах). Первые трудности возникли в середине прошлого века. В «Вестнике естественных наук» за 1847 г. можно прочитать следующее: «Ныне, когда в скором времени железные дороги прорежут Россию в разных направлениях, когда уже в Москве за сносную сажень березовых дров случается платить по 45 рублей ассигнациями, ныне по необходимости общее внимание обращено на приискание нового горючего материала, который ожидают получить или в каменном угле, или в торфе».

Энергия, заключенная в горючих ископаемых, в течение 100 с лишним лет удовлетворяла потребности человечества. Однако в наши дни человечество каждый год сжигает столько горючих ископаемых, сколько былые биосферы накопили их за миллион. При таких темпах потребления энергии, как говорилось на 27‑м Международном геологическом конгрессе в 1984 г., разведанных запасов нефти едва хватит на 32 года, газа — на 39 лет, угля — на 72 года. И поневоле взоры человечества снова обратились к возобновимому источнику энергии — живому веществу, а точнее, к зеленой массе растений (Свифт как в воду глядел!), из которой путем микробиологической переработки получают жидкое или газообразное топливо. В Бразилии, например, уже в ближайшие годы весь автомобильный транспорт должен перейти с бензина на этанол, получаемый при микробиогенной переработке сахарного тростника; та же схема получения горючего применяется и в Зимбабве. А в нашей стране разрабатывается проект использования фотосинтеза для разложения воды с получением кислорода и водорода. Для осуществления этого проекта выращивается культура двух микроорганизмов: водоросли и анаэробной цианобактерии. Осуществится ли этот проект — покажет будущее. Но, как бы то ни было, можно не сомневаться, что для удовлетворения своих потребностей человечество всегда в той или иной форме будет использовать энергетическую функцию живого вещества.

Вторая основная функция, осуществляемая живым веществом в биосфере, — концентрационная. Концентрируемое вещество частично используется для построения мягкого тела и скелета организмов, а частично — выделяется во внешнюю среду в виде экскрементов.

Концентрация вещества осуществляется двояко. Наиболее распространенный случай — это концентрация элементов в ионной форме из истинных растворов. Так строит свой скелет большинство морских беспозвоночных. Второй случай — это седиментация вещества из суспензий коллоидных растворов фильтрующими организмами.

Вопрос о концентрации живым веществом элементов из истинных растворов интенсивно разрабатывал выдающийся русский минералог, профессор Яков Владимирович Самойлов (1870—1925). Он был не только учеником и соратником Вернадского, но и его крестным сыном; при крещении он получил отчество, образованное от имени Владимира Ивановича.

В отличие от своего учителя Самойлов подходил к этому вопросу не с геохимических, а с минералогических позиций. Фактического материала в начале века было маловато, и опираться иногда приходилось на интуицию. И интуиция не подводила Якова Владимировича. В 1910 г. в статье о месторождениях барита Самойлов писал следующее: «И нам представляется уместным поставить вопрос… не имеются ли какие-нибудь организмы, содержащие в своей раковине барий, и следовательно, не происходит ли концентрация этого элемента в силу жизнедеятельности известных организмов…»

Данных о нахождении бария в составе морских организмов не было. Но в том же 1910 г. выходит книга А. Щепотьева «Исследование над низшими организмами», в которой были описаны кристаллы барита, найденные в организмах планктона — корненожках! Предположение Я. В. Самойлова блестяще подтвердилось.

Сейчас установлено, что способность концентрировать элементы из весьма разбавленных растворов является характерной особенностью живого вещества. Известно, что в современной биосфере организмы массами извлекают из недосыщенных растворов углекислые соли кальция, магния и стронция, кремнезем, фосфаты, йод, фтор и другие компоненты. Действуют они при этом строго избирательно, что можно проиллюстрировать на следующем примере. В морской воде содержание магния достигает 1350 мг/л, кальция — 400, а кремния — единицы миллиграммов. Однако, несмотря на такое соотношение, гидробионты строят свой скелет преимущественно из соединений кальция и кремния, а не магния. Степень солености морской воды в то же время в значительной мере регулирует интенсивность концентрации организмами микроэлементов.

Наиболее активными концентраторами многих элементов являются микроорганизмы. Известный западногерманский микробиолог В. Э. Крумбейн показал, что в продуктах жизнедеятельности некоторых видов микроорганизмов по сравнению с окружающей средой содержание марганца увеличено в 1 200 000 раз, железа — в 650 000 раз, ванадия — в 420 000 раз, серебра — в 240 000 раз и т. д. Однако и бактерии не творят минералы «из ничего». Эту особенность живого вещества в афористической форме сформулировал геолог Александр Васильевич Хабаков: «Бактерии не самовластные творцы месторождений, а их природные технологи-обогатители».

Благодаря концентрационной функции живого вещества во многих живых организмах обособляются минеральные образования. Морфологически они очень разнообразны. В качестве примеров можно назвать минеральные включения в тканях высших растений, капельки элементарной серы в клетках некоторых бактерий, раковины моллюсков и брахиопод, панцири диатомовых водорослей, скелеты животных и т. д.

Минералы, входящие в состав живого вещества, сейчас получили название «биоминералов», и наука, занимающаяся их изучением, обособилась в самостоятельную отрасль минералогии — биоминералогию. Ее основы в конце 10‑х годов нашего века были заложены Я. В. Самойловым (правда, сам Самойлов предлагал для новой отрасли науки другое, менее удачное название — «палеофизиология»). Своими современными успехами биоминералогия в значительной мере обязана профессору Хейнцу А. Ловенштаму — выдающемуся ученому, вынужденному покинуть родную ему Германию в годы фашизма и сейчас работающему в США.

В телах живых организмов биоминералы могут встречаться изолированно. Однако чаще биоминералы слагают наружный или внутренний скелет живых организмов. Внутренний скелет все представляют себе хорошо; наружным скелетом является футляр, которым организм защищает себя от внешней среды. Это известковые раковины моллюсков, морских ежей, роговые панцири черепах, раков и некоторых древних рыб. У одноклеточных организмов, особенно планктонных, наружный скелет в особой моде. Щеголяют в нем не только животные из подцарства простейших, но и многие водоросли. Форма панциря может быть довольно разнообразной, а что касается его материала, то многолетний (измеряемый сотнями миллионов лет) опыт показал, что лучше всего подходят для этого дела аморфный кремнезем (его предпочитают наиболее примитивные организмы — одноклеточные водоросли, простейшие и губки) и углекислый кальций. Некоторые организмы, впрочем, отдают предпочтение сульфатам.

Высшие растения скелета не имеют, и их минеральная составляющая представлена так называемыми фитолитами — продуктами выделения в форме кристаллов или округлых включений. Фитолиты состоят из неорганического (кремнезем) или органо-минерального вещества (щавелевокислый кальций). А некоторые многоклеточные водоросли, в противоположность высшим растениям, предпочитают, подобно животным, «подпорки» из карбоната кальция.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого"

Книги похожие на "Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Андрей Лапо

Андрей Лапо - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Андрей Лапо - Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого"

Отзывы читателей о книге "Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.