Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
А что нам известно о роли окружения? По мере развития каждого индивидуума у него или у нее формируется уникальное окружение, отличное от окружения любого другого человека. Возможно, именно это уникальное личное окружение и дает каждому из нас ту особенную последовательность входных данных, которая неподвластна вычислению? Хотя лично мне, например, сложно сообразить, на что именно в данном контексте может повлиять «уникальность» нашего окружения. Эти рассуждения напоминают разговор о хаосе, который мы вели выше (см. §1.7). Для обучения управляемого компьютером робота достаточно одной лишь модели некоего правдоподобного окружения (хаотического), при том, разумеется, условии, что в этой модели не будет ничего заведомо невычислимого. Роботу нет нужды учиться тем или иным навыкам в каком-то конкретном реальном окружении; его, разумеется, вполне устроит типичное окружение, моделирующее реальность вычислительными методами.
А может быть, численное моделирование пусть даже всего лишь правдоподобного окружения невозможно в принципе. Быть может, в окружающем физическом мире все же есть нечто такое, что на самом деле неподвластно численному моделированию. Возможно, некоторые сторонники A или B уже вознамерились приписать все не поддающиеся, на первый взгляд, вычислению проявления человеческого поведения невычислимости внешнего окружения. Должен, однако, заметить, что намерение это несколько опрометчиво. Ибо, как только мы признаем, что физическое поведение допускает где-то что-то такое, что невозможно моделировать вычислительными методами, мы тем самым тут же лишаемся главного, по всей видимости, основания сомневаться в правдоподобии, в первую очередь, самой точки зрения C. Если во внешнем окружении (т.е. вне мозга) имеют место процессы, не поддающиеся численному моделированию, то почему не могут оказаться таковыми и процессы, протекающие внутри мозга? В конце концов, внутренняя физическая организация мозга человека, по всей видимости, гораздо более сложна, чем большая часть (и это еще слабо сказано) его окружения, за исключением, быть может, тех его участков, где это окружение само оказывается под сильным влиянием деятельности других мозгов. Признание возможности внешней невычислимой физической активности лишает всякой силы главный аргумент против C. (См. также §3.9, §3.10.)
Следует сделать еще одно замечание относительно «не поддающихся вычислению» процессов, возможность существования которых предполагает позиция C. Под этим термином я имею в виду отнюдь не те процессы, которые всего-навсего невычислимы практически. Здесь, конечно же, уместно вспомнить и о том, что, хотя моделирование любого правдоподобного окружения, или же любое точное воспроизведение всех физических и химических процессов, протекающих в мозге, может быть, в принципе, вычислимым, на такое вычисление, скорее всего, понадобится столько времени или такой объем памяти, что вряд ли удастся выполнить его на любом реально существующем или даже вообразимом в ближайшем будущем компьютере. Вероятно, нереально даже написание соответствующей компьютерной программы, если учесть, какое огромное количество различных факторов придется принимать в расчет. Однако сколь бы существенными ни были все эти соображения (а мы еще вернемся к ним в §2.6, Q8 и §3.5), они не имеют никакого отношения к тому, что называю «невычислимостью» я (и чего требует C). Под «невычислимостью» я подразумеваю принципиальную невозможность вычисления в том смысле, который мы очень скоро обсудим. Вычисления, которые просто выходят за рамки существующих (или вообразимых) компьютеров или имеющихся в нашем распоряжении вычислительных методов, формально все равно остаются «вычислениями».
Читатель имеет полное право спросить: если ничего, что можно счесть «невычислимым», не обнаруживается ни в случайности, ни во влиянии окружения, ни в банальном несоответствии уровня сложности феномена нашим техническим возможностям, то что вообще я имею в виду, говоря «чего требует C»? В общем случае, это некий вид математически точной активности, невычислимость которой можно доказать. Насколько нам на данный момент известно, при описании физического поведения в подобной математической активности необходимости не возникает. Тем не менее, логически она возможна. Более того, она представляет собой нечто большее, нежели просто логическую возможность. Согласно приводимой далее в книге аргументации, возможность активности подобного общего характера прямо подразумевается физическими законами, несмотря на то, что ни с чем подобным в известной физике мы еще не встречались. Некоторые примеры такой математической активности замечательно просты, поэтому представляется вполне уместным проиллюстрировать с их помощью то, о чем я здесь говорю.
Начать мне придется с описания нескольких примеров классов хорошо структурированных математических задач, не имеющих общего численного решения (ниже я поясню, в каком именно смысле). Начав с любого из таких классов задач, можно построить «игрушечную» модель физической вселенной, активность которой (даже будучи полностью детерминированной) фактически не поддается численному моделированию.
Первый пример такого класса задач знаменит более остальных и известен под названием «десятая проблема Гильберта». Эта задача была предложена великим немецким математиком Давидом Гильбертом в 1900 году в составе этакого перечня нерешенных на тот момент математических проблем, которые по большей части определили дальнейшее развитие математики в начале (да и в конце) двадцатого века. Суть десятой проблемы Гильберта заключалась в отыскании вычислительной процедуры, на основании которой можно было бы определить, имеют ли уравнения, составляющие данную систему диофантовых уравнений, хотя бы одно общее решение.
Диофантовыми называются полиномиальные уравнения с каким угодно количеством переменных, все коэффициенты и все решения которых должны быть целыми числами. (Целые числа — это числа, не имеющие дробной части, например: …, -3, -2, -1, 0, 1, 2, 3, 4, …. Первым такие уравнения систематизировал и изучил греческий математик Диофант в третьем веке нашей эры.) Ниже приводится пример системы диофантовых уравнений:
6ω + 2x2 - y3 = 0, 5xy - z2 + 6 = 0, ω2 - ω + 2x - y + z - 4 = 0
Вот еще один пример:
6ω + 2x2 - y3 = 0, 5xy - z2 + 6 = 0, ω2 - ω + 2x - y + z - 3 = 0.
Решением первой системы является, в частности, следующее:
ω = 1, x = l, у = 2, z = 4,
тогда как вторая система вообще не имеет решения (судя по первому уравнению, число у должно быть четным, судя по второму уравнению, число z также должно быть четным, однако это противоречит третьему уравнению, причем при любом ω, поскольку значение разности ω2 - ω — это всегда четное число, а число 3 нечетно). Задача, поставленная Гильбертом, заключалась в отыскании математической процедуры (или алгоритма), позволяющей определить, какие системы диофантовых уравнений имеют решения (наш первый пример), а какие нет (второй пример). Вспомним (см. §1.5). что алгоритм — это всего лишь вычислительная процедура, действие некоторой машины Тьюринга. Таким образом, решением десятой проблемы Гильберта является некая вычислительная процедура, позволяющая определить, когда система диофантовых уравнений имеет решение.
Десятая проблема Гильберта имеет очень важное историческое значение, поскольку, сформулировав ее, Гильберт поднял вопрос, который ранее не поднимался. Каков точный математический смысл словосочетания «алгоритмическое решение для класса задач»? Если точно, то что это вообще такое — «алгоритм»? Именно этот вопрос привел в 1936 году Алана Тьюринга к его собственному определению понятия «алгоритм», основанному на изобретенных им машинах. Примерно в то же время другие математики (Черч, Клин, Гёдель, Пост и др.; см. [135]) предложили несколько иные процедуры. Как вскоре было показано, все эти процедуры оказались эквивалентными либо определению Тьюринга, либо определению Черча, хотя особый подход Тьюринга приобрел все же наибольшее влияние. (Только Тьюрингу пришла в голову идея специфической и всеобъемлющей алгоритмической машины, — названной универсальной машиной Тьюринга, — которая способна самостоятельно выполнить абсолютно любое алгоритмическое действие. Именно эта идея привела впоследствии к созданию концепции универсального компьютера, который сегодня так хорошо нам знаком.) Тьюрингу удалось показать, что существуют определенные классы задач, которые не имеют алгоритмического решения (в частности, «проблема остановки», о которой я расскажу ниже). Однако самой десятой проблеме Гильберта пришлось ждать своего решения до 1970 года, когда русский математик Юрий Матиясевич (представив доказательства, ставшие логическим завершением некоторых соображений, выдвинутых ранее американскими математиками Джулией Робинсон, Мартином Дэвисом и Хилари Патнэмом) показал невозможность создания компьютерной программы (или алгоритма), способной систематически определять, имеет ли решение та или иная система диофантовых уравнений. (См. [72] и [89], глава 6, где приводится весьма занимательное изложение этой истории.) Заметим, что в случае утвердительного ответа (т.е. когда система имеет-таки решение), этот факт, в принципе, можно констатировать с помощью особой компьютерной программы, которая самым тривиальным образом проверяет один за другим все возможные наборы целых чисел. Сколько-нибудь систематической обработке не поддается именно случай отсутствия решения. Можно, конечно, создать различные совокупности правил, которые корректно определяли бы, когда система не имеет решения (наподобие приведенного выше рассуждения с использованием четных и нечетных чисел, исключающего возможность решения второй системы), однако, как показывает теорема Матиясевича, список таких совокупностей никогда не будет полным.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.