» » » » Роджер Пенроуз - Тени разума. В поисках науки о сознании


Авторские права

Роджер Пенроуз - Тени разума. В поисках науки о сознании

Здесь можно скачать бесплатно "Роджер Пенроуз - Тени разума. В поисках науки о сознании" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Институт компьютерных исследований. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Роджер Пенроуз - Тени разума. В поисках науки о сознании
Рейтинг:
Название:
Тени разума. В поисках науки о сознании
Издательство:
Институт компьютерных исследований
Жанр:
Год:
неизвестен
ISBN:
5-93972-457-4, 0-19-510646-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Тени разума. В поисках науки о сознании"

Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.



Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.

Для широкого круга читателей, интересующихся наукой.






Рассуждения, представленные в §3.14 и, особенно, в §3.16, могут показаться не совсем состоятельными именно в этом отношении. Например, определение ☆M-утверждения является в высшей степени самоотносимым, поскольку представляет собой сделанное роботом утверждение, причем осознаваемая истинность этого утверждения зависит от предположений самого робота относительно особенностей его первоначальной конструкции. Здесь можно, пожалуй, усмотреть неприятное сходство с утверждением «Все критяне — лжецы», прозвучавшим из уст критянина. И все же в этом смысле самоотносимыми ☆M-утверждения не являются, так как на самом деле они ссылаются не на самих себя, а на некую гипотезу об исходной конструкции робота.

Предположим, что некто вообразил себя роботом, пытающимся установить истинность какого-то конкретного четко сформулированного Π1-высказывания P0. Робот, возможно, окажется неспособен непосредственно установить, является ли высказывание P0 в действительности истинным, однако он может обратить внимание на то, что истинность P0 следует из предположения, что истинным является каждый член некоторого вполне определенного бесконечного класса Π1-высказываний S0 (пусть это будут, скажем, теоремы формальной системы Q(M), или QM(M), или какой угодно другой системы). Робот не знает, на самом ли деле каждый член класса S0 является истинным, однако он замечает, что класс S0 есть часть результата некоторого вычисления, причем посредством этого вычисление осуществляется построение некоторой модели сообщества математических роботов, а результат S0 представляет собой семейство Π1-высказываний, ☆-утверждаемых этими самыми моделируемыми роботами. Если механизмы, лежащие в основе этого сообщества роботов, совпадают с набором механизмов M, то высказывание P0 представляет собой пример ☆M-утверждения. А наш робот придет к выводу, что если он сам построен в соответствии с набором механизмов M, то высказывание P0 также должно быть истинным.

Рассмотрим случай с более тонким ☆M-утверждением (обозначим его P1): робот отмечает, что истинность P1 является следствием истинности всех членов другого класса Π1-высказываний (например, S1), который можно получить из результата того же самого вычисления, моделирующего сообщество роботов (на основе механизмов M), только на этот раз существенная часть результата состоит из, скажем, тех Π1-высказываний, истинность которых моделируемые роботы способны установить как следствие истинности всего класса S0. Что же побудит нашего робота заключить, что истинность высказывания P1 есть непременное следствие допущения, что он построен в соответствии с механизмами M? Его рассуждение будет выглядеть приблизительно так: «Если в основе моей конструкции лежат механизмы M, то, как я уже установил ранее, необходимо признать, что класс S0 включает в себя только истинные высказывания; согласно же утверждениям моих моделируемых роботов, истинность каждого из высказываний класса S1 также следует из истинности всех высказываний класса S0, равно как и истинность высказывания P0. Таким образом, если предположить, что я и в самом деле построен в соответствии с теми же принципами, что и мои моделируемые роботы, то я должен признать, что каждый отдельный член класса S1 является истинным. А поскольку я понимаю, что истинность всех высказываний класса S1 подразумевает истинность высказывания P1 я, должно быть, могу вывести и истинность P1, исходя лишь из того же самого допущения относительно своей конструкции».

Далее можно перейти к еще более тонкому ☆M-утверждению (скажем, P2), которое возникает в том случае, когда робот замечает, что истинность P2 оказывается не чем иным, как следствием допущения истинности всех высказываний класса S2, истинность же каждого члена S2, если верить моделируемому сообществу роботов, является следствием истинности всех без исключения членов S0 и S1. И здесь наш робот оказывается вынужден признать истинность P2 на том лишь основании, что он построен в соответствии с набором механизмов M. Эту цепочку можно, очевидно, продолжать и дальше, приводя ☆M-утверждения все большей и большей тонкости (), истинность которых будет следовать из допущения истинности всех членов классов S0, S1, S2, S3, … и так далее, включая и классы с индексами более высокого порядка (см. возражение Q19 и последующий комментарий). В общем случае, главной характеристикой ☆M-утверждения для робота является осознание последним того обстоятельства, что коль скоро он предполагает, что механизмы, обусловливающие поведение моделируемых роботов, совпадают с механизмами, лежащими в основе его собственной конструкции, то ему ничего не остается, как заключить, что отсюда непременно следует истинность рассматриваемого утверждения (Π1-высказывания). В этом рассуждении нет ничего от тех внутренне противоречивых методов рассуждения, к числу которых принадлежит, в частности, парадокс Рассела. Представленные ☆M-утверждения строятся последовательно посредством стандартной математической процедуры трансфинитных ординалов (см. §2.10, комментарий к Q19). (Все эти ординалы счетны и далеки от тех логических неприятностей, которые постоянно сопутствуют обычным числам, «слишком большим» в том или ином смысле{48}).

У робота нет иных причин принимать на веру любое из этих IIi-высказываний, кроме как исходя из допущения, что он построен в соответствии с набором правил M, впрочем, для доказательства ему этой веры вполне хватает. Возникающее впоследствии действительное противоречие не является математическим парадоксом (подобным парадоксу Рассела) — это самое обыкновенное противоречие, связанное с предположением, что ни одна целиком и полностью вычислительная система не может обрести подлинного математического понимания.

Вернемся к роли самоотносимости в рассуждениях §§3.19-3.21. Называя величину c пределом сложности, допустимым для ☆-утверждений, полагаемых безошибочными, с целью построения формальной системы Q*, я никоим образом не привношу в свое рассуждение неуместной здесь самоотносимости. Понятие «степень сложности» можно определить вполне точно, как, собственно, и обстоит дело с тем конкретным определением, которое мы использовали в наших рассуждениях, а именно: «степень сложности есть количество знаков в двоичном разложении большего из пары чисел m и n, фигурирующих в обозначении вычисления Tm(n), представляющего рассматриваемое Π1-высказывание». Мы можем воспользоваться представленными в НРК точными спецификациями машин Тьюринга, положив, что Tm есть не что иное, как «m-я машина Тьюринга». Тогда никакой неточности в этом понятии не будет.

Проблема возможной неточности может возникнуть при решении вопроса о том, какие именно рассуждения мы будем принимать в качестве «доказательств» Π1-высказываний. Однако в данном случае некоторый недостаток формальной точности является необходимой составляющей всего рассуждения. Если потребовать, чтобы совокупность аргументов, принимаемых в качестве обоснованных доказательств Π1-высказываний, была целиком и полностью точной и формальной — читай: допускающей вычислительную проверку, — то мы снова окажемся в ситуации формальной системы, над которой грозно нависает гёделевское доказательство, явным образом демонстрируя, что любая точная формализация подобного рода не может представлять всю совокупность аргументов, пригодных, в принципе, для установления истинности Π1-высказываний. Гёделевское доказательство показывает — к добру ли, к худу ли, — что никаким допускающим вычислительную проверку способом невозможно охватить все приемлемые человеком методы математического рассуждения.

Читатель, возможно, уже беспокоится, что все мои рассуждения здесь затеяны с целью получить точное определение понятия «роботово доказательство» посредством хитрого трюка с «безошибочными ☆-утверждениями». В самом деле, при введении гёделевского рассуждения необходимым предварительным условием было как раз получение точного определения этого понятия. Возникшее же в результате противоречие просто послужило еще одним подтверждением того факта, что человеческое понимание математической истины невозможно полностью свести к процедурам, допускающим вычислительную проверку. Главной целью всех представленных рассуждений было показать, посредством reductio ad absurdum, что человеческое представление о восприятии неопровержимой истинности Π1-высказываний невозможно реализовать в рамках какой бы то ни было вычислительной системы, будь она точной или какой-либо иной. В этом нет никакого парадокса, хотя кому-то полученные выводы могут показаться весьма и весьма тревожными. Получение противоречивых выводов является вполне естественным и даже единственно возможным завершением любого доказательства, построенного на reductio ad absurdum; кажущаяся парадоксальность этих выводов служит лишь для того, чтобы полностью исключить из рассмотрения то самое предположение, с которого доказательство, собственно, и начиналось.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Тени разума. В поисках науки о сознании"

Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Роджер Пенроуз

Роджер Пенроуз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"

Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.