» » » » Владимир Куманин - Материалы для ювелирных изделий


Авторские права

Владимир Куманин - Материалы для ювелирных изделий

Здесь можно купить и скачать "Владимир Куманин - Материалы для ювелирных изделий" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство Астрель, Кладезь, год 2012. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Куманин - Материалы для ювелирных изделий
Рейтинг:
Название:
Материалы для ювелирных изделий
Издательство:
неизвестно
Год:
2012
ISBN:
978-5-271-4577
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Материалы для ювелирных изделий"

Описание и краткое содержание "Материалы для ювелирных изделий" читать бесплатно онлайн.



Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.

Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.

Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».






Ювелирные отливки из сплавов на медной, алюминиевой, цинковой основах, а также из серебра и золота выполняются эстрих-процессом, где операции проводят в несколько другой последовательности и применяют другие материалы. Пресс-формы, в которых изготовляют модели из воскоподобных материалов, выполняются из ласила, виксинта или резины. После того как изготовлены модели и получены блоки, их помещают в трубчатые опоки и заливают суспензией, состоящей из огнеупорных материалов (динаса или кристобалита), гипса и воды. После отвердения суспезии опоки помещают в муфельную печь и производят выплавку модельного состава. Затем форму прокаливают при 750–800 °C и заливают расплавленным металлом. Дальнейшие операции выполняются по приведенной выше технологии, за исключением выщелачивания. Удаление формовочной массы производится под струей воды (вспомогательные материалы, используемые при литье по выплавляемым моделям для сплавов с температурой плавления свыше 1100 °C и литье эстрих-процессом, приведены в Приложении).

В нашей стране этот вид литья получил развитие в 1968 г. Тогда были произведены закупки оборудования в ФРГ и Италии. Технология стала высокопроизводительной и экономичной, благодаря чему ювелирные изделия подешевели.

В производстве ювелирных изделий выделяют ручное, точное литье, прокатку в вальцах, штамповку и механическую обработку.

Точное литье по выплавляемым моделям позволяет существенно удешевить производство, копировать и тиражировать ювелирные изделия в любом количестве. Кроме того, механической обработки требуется меньше, и себестоимость изделия в целом оказывается значительно ниже, чем при использовании любого другого метода литья. Все это дает возможность быстро реагировать на изменение рыночной ситуации и обеспечивает литейным ювелирным изделиям большую конкурентоспособность. Поэтому возникает потребность механизации ювелирного дела – от ручной сборки до тиража, выполняемого точным литьем. Кроме того, необходимо специализировать технологические процессы изготовления ювелирных изделий и оснастить рабочие места специализированным оборудованием.

В наше время Россия в числе передовых стран – таких, как Италия, Германия, США, Израиль и Турция, – занимает одно из ведущих мест по производству ювелирной продукции.

3. Основы строения материалов

3.1. Структура вещества в твердом состоянии

В твердом состоянии большинство неорганических материалов (более 96 %) имеют кристаллическое строение, т. е. правильное, упорядоченное, периодическое расположение атомов, ионов или молекул в пространстве.

Характер расположения атомов, ионов или молекул в пространстве принято описывать с помощью кристаллической решетки. Если мысленно соединить центры тяжести атомов, ионов или молекул прямыми, то образуется пространственная решетка, в узлах которой находятся те частицы, из которых состоит вещество. Так как положение атомов в пространстве является периодическим, правильным, а следовательно, симметричным, то и кристаллическая решетка также будет обладать определенной симметрией.

Симметрией кристаллов называют их свойство совмещаться с собой при поворотах, отражениях, параллельных переносах или при комбинации этих операций.

На рис. 3.1 показаны пример правильного, периодического расположения атомов в пространстве и кристаллическая решетка.

Рис. 3.1. Схема расположения атомов в твердом теле.

В кристаллической решетке можно выделить минимальный объем, с помощью которого описываются положение атомов и симметрия решетки в целом. Этот параллелепипед называется элементарной ячейкой.

Таблица 3.1

Варианты кристаллических решеток

Ребро такого параллелепипеда называется периодом или параметром решетки. Величина параметра решетки соизмерима с размерами атома. Для металлов параметры решетки составляют 0,2–0,6 нм, в зависимости от размера атома и типа кристаллической решетки. Элементарные ячейки могут иметь прямые или косые углы, ребра параллелепипедов могут быть равны друг другу или не равны, а следовательно, у них разная симметрия.

По симметрии формы элементарные ячейки, и соответственно кристаллические решетки, разделены на три категории: низшую, среднюю и высшую. Низшая категория содержит три сингонии: триклинную, моноклинную и ромбическую. Средняя – также три сингонии: тригональную, тетрагональную и гексагональную. Высшая категория включает одну сингонию – кубическую (табл. 3.1).

Свойства вещества зависят от природы тех частиц, из которых оно состоит, типа связи и ее энергии, а также от типа кристаллической решетки. Так, например, углерод в твердом состоянии существует в двух кристаллических формах: в виде графита с гексагональной решеткой и в виде алмаза с кубической решеткой. Возможность существования одного и того же вещества в нескольких кристаллических формах называется аллотропией или полиморфизмом. Этим свойством обладают некоторые металлы (олово, железо, титан, марганец и др.).

Любое вещество в природе может существовать в трех агрегатных состояниях: газообразном, жидком и твердом. В подавляющем большинстве случаев в твердую фазу вещество переходит из жидкой.

Процесс перехода вещества из жидкого состояния в твердое называется кристаллизацией. В расплавленном, жидком состоянии металл не имеет правильного кристаллического строения. Однако расположение атомов не полностью хаотично. В жидкости имеются группы атомов с правильным расположением, характерным для кристаллической решетки данного вещества. Группы эти нестабильны из-за большой подвижности атомов. Они образуются, рассыпаются, распадаются, возникают в новых местах. Такие группы атомов служат зародышами кристаллов в процессе кристаллизации, происходит при температуре ниже температуры плавления. Эта температура является константой для каждого вещества. Так, например, температура плавления меди составляет 1083 °C, серебра – 960 °C и т. д. При температурах ниже указанных эти металлы пребывают в твердом состоянии.

Процесс кристаллизации начинается с зарождения мелких кристалликов – зародышей кристаллизации. Их образование носит случайный характер. Другими словами, возникновение кристалла может произойти в любой части объема жидкости. Одновременно формируется не один, а несколько кристаллов (в некоторых случаях множество). Скорость зарождения – это число кристалликов, появляющихся в единице объема в единицу времени.

Образованные кристаллики растут за счет присоединения атомов из жидкости. При этом грань растущего кристалла перемещается в сторону жидкой фазы. Линейная скорость перемещения грани растущего кристалла называется скоростью роста кристалла.

На рис. 3.2 приведен пример кристаллизации в схематическом виде. Скорость зарождения составляет 4 зародыша в секунду, скорость роста кристалла – 1 мм в секунду. За первую секунду в объеме образовалось 4 кристаллика (обозначены цифрой 1). За вторую еще 4 (обозначены цифрой 2), а ранее возникшие кристаллы выросли на 1 мм с каждой стороны. В следующую секунду образовалось еще 4 кристалла (обозначены цифрой 3), и выросли все, образованные ранее, и т. д.

Рис. 3.2. Кинетика процесса кристаллизации.

Скорость зарождения – 4 зародыша в секунду; скорость роста кристалла – 1 мм в секунду. Наименее симметрична триклинная сингония, наиболее симметрична – кубическая.

Как видно из приведенной схемы, форма растущего кристалла остается правильной, пока он окружен жидкостью со всех сторон. Однако в ходе кристаллизации количество жидкой фазы уменьшается, кристаллы сталкиваются и рост их в сторону друг друга, естественно, прекращается. Кристалл продолжает расти в тех направлениях, в которых он соприкасается с жидкостью. В связи с этим кристалл теряет правильность формы. Таким образом, структура металлов в твердом состоянии состоит из множества кристаллов неправильной формы.

Эти кристаллы называют зерном или кристаллитами, а саму структуру – поликристаллической.

Размер зерна металла зависит от скорости зарождения и скорости роста кристаллитов при кристаллизации. Чем выше скорость зарождения, тем меньше размер получаемого зерна. Чем выше скорость роста, тем оно крупнее.

В зависимости от состава жидкости при переходе ее в твердое состояние кристаллиты-зерна имеют разный состав. В частности, могут состоять из простого вещества – химического элемента, например чистого золота. Если расплав состоит не из одного, а из двух или более компонентов, то в результате кристаллизации возможны следующие виды взаимодействия:

1. Состав сплава таков, что соответствует химическому соединению. Тогда при кристаллизации все зерна однородны по составу, соответствующему этому химическому соединению, одинаковы по структуре. Так же как в случае кристаллизации чистого вещества, структура сплава однофазна.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Материалы для ювелирных изделий"

Книги похожие на "Материалы для ювелирных изделий" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Куманин

Владимир Куманин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Куманин - Материалы для ювелирных изделий"

Отзывы читателей о книге "Материалы для ювелирных изделий", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.