» » » » Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных


Авторские права

Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных

Здесь можно скачать бесплатно "Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Ломоносовъ, год 2011. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных
Рейтинг:
Название:
История математики. От счетных палочек до бессчетных вселенных
Издательство:
Ломоносовъ
Жанр:
Год:
2011
ISBN:
978-5-91678-097-0
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "История математики. От счетных палочек до бессчетных вселенных"

Описание и краткое содержание "История математики. От счетных палочек до бессчетных вселенных" читать бесплатно онлайн.



Эта книга, по словам самого автора, — «путешествие во времени от вавилонских „шестидесятников“ до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…

Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.






Делают возражение, что для исчезающих количеств не существует «предельного отношения», ибо то отношение, которое они имеют ранее исчезания, не есть предельное, после же исчезания нет никакого отношения. Но при таком и столь же натянутом рассуждении окажется, что у тела, достигающего какого-либо места, где движение прекращается, не может быть «предельной» скорости, ибо та скорость, которую тело имеет ранее, нежели оно достигло этого места, не есть «предельная», когда же достигло, то нет скорости. Ответ простой: под «предельной» скоростью надо разуметь ту, с которою тело движется не перед тем как достигнуть крайнего места, где движение прекращается, и не после того, а когда достигает, т. е. именно ту скорость, обладая которою тело достигает крайнего места и при которой движение прекращается. Подобно этому под предельным отношением исчезающих количеств должно быть разумеемо отношение количеств не перед тем как они исчезают и не после того, но при котором исчезают. Точно так же и предельное отношение зарождающихся количеств есть именно то, с которыми они зарождаются. Предельная сумма зарождающихся или исчезающих количеств есть та составленная из них сумма, когда они, увеличиваясь или уменьшаясь, только начинают или прекращают быть.

Исаак Ньютон Математические начала натуральной философии. О движении тел. Книга первая. Отдел I. О методе первых и последних отношений, при помощи которого последующее доказывается (1726)[18]

14. Океаны и звезды

Все ранние цивилизации занимались составлением карт. Цели ставились разные — строительство, сбор налогов или подготовка к войне, однако землемер — одна из самых древних профессий, для которой были необходимы математические знания. Одна из статуй, датируемая приблизительно XXIII веком до нашей эры, изображает царя шумерского города-государства Лагаш с планом храма Нингирсу, а также с линейкой и орудием для письма. Это — самый ранний известный пример того, когда для строительства чего бы то ни было используется масштаб. Были найдены карты известного тогда мира, изображенные на вавилонских глиняных табличках, египетском папирусе и китайском шелке. Римляне продолжили греческие традиции картографирования — их трактат о землемерном деле — Corpus agrimensorum — основывается на правилах измерений и рисовании карт в масштабе.

Делая карту небольшого участка, мы можем допустить, что поверхность земли плоская, но, когда мы стремимся изобразить большие территории, искривление поверхности земли становится значимым фактором. Когда люди поняли, что Земля имеет сферическую форму, точно не известно. Согласно некоторым легендам, населено было только одно полушарие. Эратосфен, с 240 года до нашей эры ставший главным библиотекарем Александрии, составил первую известную карту, основанную на научных принципах, с неравномерной сеткой параллелей и меридианов. На его современников карта не произвела особого впечатления, и лишь «География» Клавдия Птолемея, появившаяся приблизительно в 150 году, стала общепринятым стандартом в картографии. В этой работе утверждается, что Земля имеет сферическую форму, но населена она лишь частично, и ее окружность равна 180 000 стадиям. Более точное значение высчитал Эратосфен, считавший, что окружность Земли равна 250 000 стадиям (считается, что один стадий приблизительно равен 160 метрам). Самым значительным вкладом «Географии» можно считать создание основ для преобразования сферы в плоскую поверхность. Карта Птолемея была обновлена ал-Хорезми (см. Главу 7), который полагался на знание Птолемеем стран Средиземноморья, но существенно уточнил ее в области Средней Азии.

Преобразование сферической Земли в плоскую карту всегда будет приводить к некоторым искажениям, и главная задача картографа — определение, какие факторы приводят к наибольшим искажениям, а какие — к наименьшим. Конформная проекция минимизирует искажение углов и форм объектов, в равновеликой проекции очень точны значения площадей, а в равнопромежуточной — расстояния. Как мы увидим в дальнейшем, к картам континентальных массивов и изображениям морей выдвигаются совершенно разные требования.

После того как в Европе с начала XIV века стали развиваться мореплавание и торговля, начали появляться портуланы (от итальянского слова «portolano», первоначально обозначавшего лоцию — письменные указания для мореплавателей). Они представляли собой сетку из прямых линий, или румбов, призванных помогать мореплавателям в планировании маршрутов вокруг Европы и по Средиземноморью. Главным образом портуланы делались в Венеции, Генуе и на Майорке. Эти «дедушки» нынешних лоций были удивительно точными, даже при том, что неясно, учитывалась ли в них какая-либо проекция. До сих пор ведутся споры о том, насколько активно использовались компасы (китайское изобретение), а также об объемах астрономических знаний, необходимых для навигации. Но после открытия Америки и выхода первого печатного издания «Географии» Птолемея все было готово для появления более точной карты мира. «География» Птолемея повторно появилась в Европе уже в XV веке: она впервые была напечатана в Болонье в 1477 году. В период Ренессанса использовались различные виды проекций, порой просто по эстетическим причинам. В качестве примера можно привести популярную овальную карту мира, впервые использованную Франческо Росселли (1445–1513) в 1508 году. Эти проекции были основаны скорее на графических построениях, нежели на использовании тригонометрических формул.

Герхард Меркатор (1512–1594), которого называли «Птолемем нашего времени» создал первую проекцию специально для того, чтобы помочь мореплавателям. Меркатор учился в Лёвенском университете, где получил степень по философии, а затем продолжил образование, изучая математику, астрономию и картографию. Он также стал мастером-гравером и специалистом по изготовлению оптических инструментов. С середины 1500-х годов он составил множество карт, включая карты Фландрии и Палестины. В 1544 году Меркатор был арестован за ересь, но вскоре, благодаря активной защите университета, его освободили, после чего он переехал в Дуйсбург (ныне Германия), и в 1564 году стал придворным космографом герцога Вильгельма. Именно в Дуйсбурге в 1569 году он создал известную Меркаторову проекцию для карты мира. Ее новизна заключалась в том, что линии румбов изображены на карте в виде прямых, что значительно облегчало навигацию для мореплавателей. На сфере, если корабль отправился в путь под определенным румбом к меридиану (если это не точное движение на север, юг, восток или запад), его путь будет представлять собой кривую на сфере; фактически, если бы корабль мог плыть непрерывно, то его путь представлял бы собой спираль к одному из полюсов. Преобразование румбов в прямые линии значительно облегчало задачу мореплавателей. Другое преимущество этой системы заключается в том, что проекция Меркатора сохраняет углы, так что при смене курса, скажем, на 30°, новая линия румба будет располагаться под углом 30° к предыдущему курсу. С тех пор эта проекция стала самой популярной в картографии, хотя сильно искажала контуры на высоких широтах и некоторые хотели бы заменить ее равновеликой проекцией, вроде той, что не так давно была названа в честь Арно Петерса.

Математический анализ проекции Меркатора впервые провел английский математик и картограф Эдвард Райт (1561–1615) в книге «Некоторые ошибки в навигации» (1599). В том же году в «Книге путешествий» Ричарда Хаклута была опубликована карта мира Райта, основанная на проекции Меркатора. Когда ученые узнали больше о земной и небесной сферах, приобрели популярность двойные глобусы, — они чаще всего использовались для обучения, но были также символами нового знания: земной шар в таких моделях был заключен в шарнирно устроенную небесную сферу. В связи с увеличением точности астрономических наблюдений и с началом великих геодезических проектов во Франции, Великобритании и других европейских странах, возникла необходимость постоянного и регулярного обновления карт.

Но, чтобы создавать точные карты, нужно было безошибочно определить широту и долготу ключевых точек поверхности. Найти широту всегда было довольно просто — она соответствовала высоте небесного полюса. Днем использовалось положение Солнца с применением таблиц склонения, по которым можно было определить угловое расстояние Солнца от экватора в любой день года. Однако определить долготу было намного труднее. Теоретически все было ясно: считая нулевой меридиан основой для измерения времени, сдвиг на каждые 15° долготы от меридиана соответствовал отклонению местного времени от меридианного на один час. Местное время можно было установить астрономически или при помощи солнечных часов, но при этом надо было знать точное время на меридиане. Сначала предлагалось использовать Луну как своего рода ночные часы, отмеряющие время, когда она пересекает небо. Но Луна движется по небу крайне неравномерно, а морские плавания были настолько долгими, что такой метод можно было применять лишь тогда, когда у навигатора имелись таблицы движения Луны, расписанные на много лет вперед. Именно с этой целью в 1675 году была основана Гринвичская королевская обсерватория. Лишь в 1767 году королевский астроном Невил Маскелайн (1732–1811) издал свой «Навигационный альманах», в который входили таблицы угловых расстояний до Луны, измеренные через каждые 3 часа в течение всего года. К тому времени был уже почти готов морской хронометр Джона Харрисона и вскоре стал самым распространенным методом вычисления долготы во время похода в открытом море. Точные часы, установленные на борту судна, показывают время на меридиане, значит, необходимо определить местное время по Солнцу и звездам. Разница между этими двумя показателями и даст долготу судна.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "История математики. От счетных палочек до бессчетных вселенных"

Книги похожие на "История математики. От счетных палочек до бессчетных вселенных" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Манкевич

Ричард Манкевич - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Манкевич - История математики. От счетных палочек до бессчетных вселенных"

Отзывы читателей о книге "История математики. От счетных палочек до бессчетных вселенных", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.