» » » » Андрей Болибрух - Воспоминания и размышления о давно прошедшем


Авторские права

Андрей Болибрух - Воспоминания и размышления о давно прошедшем

Здесь можно скачать бесплатно "Андрей Болибрух - Воспоминания и размышления о давно прошедшем" в формате fb2, epub, txt, doc, pdf. Жанр: Поэзия, год 2003. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Андрей Болибрух - Воспоминания и размышления о давно прошедшем
Рейтинг:
Название:
Воспоминания и размышления о давно прошедшем
Издательство:
неизвестно
Жанр:
Год:
2003
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Воспоминания и размышления о давно прошедшем"

Описание и краткое содержание "Воспоминания и размышления о давно прошедшем" читать бесплатно онлайн.



Эта книга написана Андреем Андреевичем Болибрухом, выдающимся математиком, академиком РАН, лауреатом Государственной премии и высшей математической награды страны — премии им. А. М. Ляпунова. Книга содержит воспоминания о годах учебы в Ленинградском физико-математическом интернате и Московском университете, а также стихотворения, написанные в юности. В ней раскрывается еще одна сторона таланта этого многогранного человека — его литературный дар. К сожалению, автору не удалось увидеть эту книжку при жизни. А. А. Болибрух умер 11 ноября 2003 года в госпитале Парижа в возрасте 53-х лет и в это до сих пор трудно поверить.






Я вновь столкнулся с математикой буквально через год, играя с друзьями в классики на разрисованном мелом асфальте. Не помню, кто принес в наш двор задачу-головоломку: как обвести заклеенный конверт (прямоугольник с нарисованными диагоналями) карандашом так, чтобы при этом не пройти дважды ни по одному ребру картинки. Мы все как один бросили классики и стали чертить мелом на асфальте бесконечные конверты. Однако у нас ничего не получалось. При этом незаклеенный конверт легко поддавался такому обводу, а вот заклеенный — нет.

Я долго не мог забыть эту задачу, пока через три года кто-то из моих старших друзей не рассказал мне ее решения. Оказалось, что если такая обводка картинки возможна, то у всех вершин кроме конечной и начальной должно быть четное число входящих в них ребер, потому что, войдя в вершину по одному ребру, вы должны затем выйти по другому, стало быть, каждый проход ведет к обводке двух ребер, а это четное число. Нечетное число ребер может быть лишь у двух вершин, начальной и конечной, но у заклеенного конверта таких нечетных вершин четыре. Значит, задача не имеет решения.

Я так подробно пишу об этой хорошо известной задаче, потому что, во-первых, полностью понял тогда ее решение, а во-вторых, испытал совершенно исключительное чувство красоты и освобождения: поразительно, но оказалось, что не надо решать каждую такую задачу в отдельности, а можно изучить их все сразу, заметив то общее, что их объединяет: четность и нечетность числа ребер. Эта идея, идея сопоставления арифметического инварианта геометрической конструкции (как мы бы теперь сказали) меня совершенно поразила.

Потом, когда я начал заниматься в математическом кружке пятого класса в Таллине у замечательной учительницы Анны Аркадьевны, открывшей мне дверь в интригующий и загадочный мир математики, я часто встречался с этой идеей в различных ситуациях, но первое впечатление, связанное с задачей о конверте, запомнилось мне на всю жизнь.

Новый импульс к занятиям математикой, который я испытал, совпал по времени с нашим переездом в Калининград. Я учился тогда в восьмом классе и очень интересовался радиоэлектроникой: собирал сам транзисторные приемники, упаковывая их в миниатюрные мыльницы, и эти приемники работали. Как-то отец купил мне ламповый усилитель в наборе, я, тщательно сверяясь со схемой, собрал его, а затем решил присоединить к нему колебательный контур, чтобы получить настоящий радиоприемник. Я купил ферритовый стержень, намотал на него моток проволоки и подсоединил к усилителю через переменный конденсатор. Каково же было мое удивление, когда в приемнике послышался бодрый дикторский голос с типичным западным акцентом: я попал неожиданно на волну «Голоса Америки»!

Мне хотелось продолжить эти занятия на более содержательном уровне, и я пошел в Калининградский городской дом пионеров, чтобы записаться в соответствующий кружок, но тот был совершенно переполнен желающими, и мне отказали. Тогда я с горя записался в кружок вычислительной техники, который оказался на поверку кружком по математике, причем очень хорошего уровня: здесь работали преподаватели Калининградского политехнического института, и здесь я очень многому научился, познакомившись с совершенно новым для себя классом задач и методов.

До сих пор помню, какое впечатление произвела на меня одна естественная несложная геометрическая задача, рассказанная преподавателем: можно ли на бесконечной клетчатой бумаге провести через данный узел прямую, не пересекающую других узлов решетки?

Решение здесь вновь сводится к арифметике: если бы все прямые, выходящие из данного узла, пересекали бы обязательно какой-либо другой узел, то тангенсы углов в прямоугольном треугольнике, образованные отрезком такой прямой и перпендикулярными линиями сетки, проходящими через эти узлы, были бы обязательно рациональными числами, но ведь можно провести прямую через данный узел так, что тангенс соответствующего угла будет иррациональным, и такая прямая, стало быть, других узлов не пересечет.

Занятия в кружке шли очень интенсивно, и мой математический уровень под влиянием этих занятий заметно вырос, а главное, я почувствовал настоящий вкус к решению задач, меня по-прежнему завораживали неожиданные связи между различными методами, комбинаторными, геометрическими и числовыми, которые порой совершенно неожиданным образом объединялись при решении конкретной задачи.

Система олимпиад в Калининградской области была прекрасно отлажена, и в 1965 году я прошел по всей выстроенной олимпиадной цепочке, победив последовательно на школьной, районной и областной олимпиадах. Вместе со мной в областную команду, едущую на Всероссийскую физико-математическую олимпиаду, также попал мой приятель по кружку Боря Ровнер, и руководство команды приняло решение взять вместо девятиклассников двух способных учеников восьмого класса.

Это решение оказалось правильным. Боря получил на Всероссийской олимпиаде диплом второй степени по физике, а я — аналогичный диплом по математике, и в результате впервые Калининградская областная команда в борьбе с другими областными и республиканскими командами вошла в почетную десятку.

С удовольствием вспоминаю проведенное в Москве, в МГУ и в МФТИ олимпиадное время: здесь я впервые услышал лекцию А. Н. Колмогорова о комплексных числах, вживую увидел И. Г. Петровского, вручавшего нам дипломы, и познакомился с другими победителями по математике, которыми стали Андрей Суслин и Игорь Кричевер, разделившие со мной диплом второй степени, и Мишей Бощерницаном, получившим диплом первой степени. (Суслин и Кричевер сейчас — крупнейшие математики с мировым именем, что же касается Миши, то он давно живет в Израиле и является ярким специалистом по теории динамических систем.)

В качестве приза я получил увесистую стопку книг по математике, которую поленился тащить домой и сдал в букинистический, чего до сих пор не могу себе простить, ведь в этой пачке находилась книга Спрингера «Римановы поверхности», от которой я и сейчас бы не отказался, и многое другое.

После олимпиады я поступил в Ленинградскую физико-математическую школу-интернат номер 45, и начался совсем новый период в моей жизни, о котором также немного рассказано в этой книжке.

Школа

Я вырос в семье военнослужащего, мы часто переезжали, и за свою жизнь я сменил несколько школ: начинал учиться в первом классе в белорусском городе Полоцке, затем во время отцовской учебы в академии Генерального штаба два года проучился в Москве, а с третьего по седьмой класс включительно — в Таллине. Пожалуй, именно таллинский период жизни стал для меня самым насыщенным и интересным.

Отец, по обыкновению, устроил нас с сестрой в самую лучшую местную школу номер 19, в которой я и проучился целых 5 лет. Школа у нас была действительно очень хорошая с прекрасными учителями математики, физики, английского, а мой класс отличался еще и очень сильным и ровным составом. Юра Меримаа, Миша Корчемкин, Лена Скульская, Густав Пялль, Олег Румянцев, Саша Судницын были уже тогда в детском возрасте неординарными личностями, и общение с ними было для меня большой радостью.

Юра и Миша привлекли меня к занятиям плаваньем в бассейне ЦСКА, и все 5 лет я его исправно посещал, так, правда, и не добившись каких-либо спортивных успехов, но научившись грамотно плавать всеми стилями и наработав себе запас здоровья на много лет вперед. А с Олегом мы посещали многочисленные таллинские кружки во Дворце пионеров и в других местах.

Чем я только не занимался тогда! Кружок по радиоделу, где я научился азбуке Морзе, театральный кружок, где я сыграл в пьесе «Тимур и его команда» (до сих пор помню замечательную сцену, в которой Тимур говорит какой-то опешившей при его появлении девочке: «Тише, Таня, кричать не надо, я — Тимур») спортивная секция фехтования на саблях и т. п. Когда отец звонил домой, находясь в очередной командировке, то обязательно спрашивал, в какой еще кружок записался его сын и удовлетворенно хмыкал, выслушав очередной длинный перечень.

Но самым полезным для меня в ту пору оказался неожиданно кружок рисования, куда я записался по следующей причине. Дело в том, что я был воспитан в психологии отличника. Обладая в детстве сильным энергичным характером, я во всем желал быть первым, и родители умело канализировали эту мою страсть в сторону учебы. Для меня было абсолютно неприемлемым уступать кому-то в школьных занятиях, а уж получать четверки — тем более. И вот в одной из четвертей я получил «четыре» по рисованию, что было для меня совершенно непереносимо. И тут-то мой приятель Гутя Пялль, который уже тогда прекрасно рисовал, и привел меня на занятия этого кружка.

Сразу честно признаюсь, что никогда не обладал и, по-видимому, уже не буду обладать способностями рисовальщика, и тем не менее занятия в кружке оказались захватывающе интересными. Мы не только рисовали (что у меня получалось неважно), но и выслушивали интересные лекции. Именно на этом кружке я впервые узнал о перспективе, и с того момента, по крайней мере композиционно, мои рисунки стали приемлемыми. Произошло на одном из занятий кружка и событие, которое очень повлияло на меня, раздвинув рамки моего восприятия мира. Один из моих одноклассников, Ориничев, бравший кроме регулярных занятий еще и платные индивидуальные, как-то принес свою акварель, на которой был изображен лежащий у стены большой стеклянный шар, на который падали солнечные лучи, преломляясь всевозможными цветами радуги и окрашивая этими цветами стену.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Воспоминания и размышления о давно прошедшем"

Книги похожие на "Воспоминания и размышления о давно прошедшем" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Андрей Болибрух

Андрей Болибрух - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Андрей Болибрух - Воспоминания и размышления о давно прошедшем"

Отзывы читателей о книге "Воспоминания и размышления о давно прошедшем", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.