» » » » Галина Серикова - Сварочные работы. Практический справочник


Авторские права

Галина Серикова - Сварочные работы. Практический справочник

Здесь можно купить и скачать "Галина Серикова - Сварочные работы. Практический справочник" в формате fb2, epub, txt, doc, pdf. Жанр: Сделай сам. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Галина Серикова - Сварочные работы. Практический справочник
Рейтинг:
Название:
Сварочные работы. Практический справочник
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сварочные работы. Практический справочник"

Описание и краткое содержание "Сварочные работы. Практический справочник" читать бесплатно онлайн.



Сварка находит применение не только в промышленности – она часто используется в быту и малом строительстве. Поэтому представляется важным получить навыки ее выполнения, тем более что эта технология вполне доступна каждому. В этой книге затронуты некоторые теоретические аспекты, но особое внимание уделяется именно вопросам практического овладения сварочными работами.






К другим особенностям сварки относится то, что в зоне соединения происходит активное воздействие газов и шлаков на расплавленный металл. Кроме того, может применяться присадочный материал, необходимый для формирования металла шва, причем не исключаются значительные различия между химическим составом присадок и основного металла.

Таким образом, при сварке за небольшой промежуток времени наблюдаются сложные процессы, во время которых разные химические элементы взаимодействуют друг с другом. Рассмотрим эти явления, чтобы лучше представлять себе, что стоит за сварочными процессами.

Наиболее важен процесс кристаллизации металла шва. Во время сварки вместе с перемещением дуги передвигается и сварочная ванна, а расплавленный металл, оставшийся в ее тылу, постепенно охлаждается и затвердевает. Так образуется сварной шов. Величина и протяженность сварочной ванны определяются различными факторами, в частности типом источника тепла, его мощностью, режимом сварки, характеристиками металла, подвергающегося сварке, и др. Первыми кристаллизуются частично сплавленные зерна основного металла, находящегося на границе расплавления, к решетке которых прикрепляются атомы кристаллизующейся фазы. По окончании затвердения в зоне расплавления формируются зерна, которые состоят из основного металла и металла сварного шва, благодаря чему и обеспечивается соединение, т. е. непрерывная металлическая связь «основной металл – шов – основной металл».

Для процесса кристаллизации характерна высокая скорость, поскольку интенсивный нагрев сварочной дугой сменяется таким же энергичным отводом тепла в свариваемое изделие. Металл сварного шва может за секунду остывать на десятки или даже сотни градусов.

Изучение кристаллизации сварного шва методами металлографии показывает, что в различных его частях формируются кристаллы разного размера: в верхних – более крупные, а в нижних – более мелкие. Кристаллы в зависимости от своего месторасположения различаются и формой: в средней зоне они имеют транскристаллитное строение, т. е. удлиненную форму, а в верхней – дендритное строение, т. е. ветвистую форму.

Кристаллизация как процесс протекает неравномерно, поскольку периодически изменяется теплообмен и т. д. В результате этого сварной шов неоднороден, в нем четко выделяется слоистая структура. Кристаллизационные слои, в свою очередь, состоят из трех участков:

– нижнего, содержащего незначительное количество серы, фосфора и углерода. Этот участок, отличающийся наиболее выраженным почернением при травлении, образуется в процессе кристаллизации тонкого слоя жидкого металла, прилегающего к оплавленной поверхности, в который названные элементы проникли из соседних участков основного металла;

– среднего, в котором содержится примерно такое же количество серы, фосфора и углерода, как и в металле шва. Он кристаллизуется из расплавленного металла исходного состава, бывает самым широким и характеризуется достаточно однородным почернением при травлении;

– верхнего, содержащего наименьшее количество серы, углерода и фосфора и дающего ослабленное почернение при травлении.

Последующие кристаллизационные слои формируются таким же образом.

Не менее важное явление, которое сопровождает процесс сварки, – это диссоциация газов, при которой молекулы газа переходят в атомарное состояние (H2 → 2H, O2 → 2O, N2 → 2N). При этом активность атомов кислорода, водорода и азота значительно возрастает, они легче растворяются в расплавленном металле, увеличивая его хрупкость, уменьшая пластичность и т. д.

Разложению подвергаются молекулы и других веществ, например плавиковый шпат, имеющийся в составе электродных покрытий, под воздействием высокой температуры распадается на фтористый кальций и свободный фтор (CaF2 → CaF + F), причем последний при достижении температуры 6000 °C активно диссоциируется. Наряду с минусами, которые несет свободный фтор (в его присутствии условия горения сварочной дуги изменяются в худшую сторону), есть и положительный момент: он образует с водородом устойчивое соединение, т. е. риск образования газовых пор снижается, что улучшает свойства металла шва.

Для понимания особенностей сваривания металлов необходимо иметь представление об основных химических реакциях, которые протекают в зоне сварки. Сам процесс в упрощенной форме выглядит так: под воздействием высокой температуры электрической дуги кромки сваривающихся металлов, электродного металла и флюса расплавляются. В ходе этого формируется сварочная ванна, вокруг которой находится относительно холодный металл, причем его толщина может быть значительной, и которая покрыта расплавленным шлаком. В результате при сварке наблюдается взаимодействие между расплавленным металлом с одной стороны и шлаком, атмосферным воздухом и выделяющимися в процессе плавления газами – с другой. Начало этого процесса отмечается с того момента, как только появляются первые капли металла электрода, а его завершение знаменуется полным охлаждением металла шва.

Основными составляющими газовой среды, в которой протекает процесс сварки, являются CO2, CO, H2O, H2, O2, N2 и продукты их диссоциации – OH, H, N, O. Кроме того, здесь присутствуют пары металла и шлака.

Источники кислорода – окружающий воздух и электродное покрытие. При взаимодействии кислорода с расплавленным металлом железо окисляется, образуя оксиды – закись железа FeO (II), окись железа Fe2O3 (III), закись-окись железа Fe3O4 (с содержанием O2 22,27, 30,06 и 27,64 % соответственно), что иллюстрируется следующими реакциями:

2Fe + O2 ↔ 2FeO;

Fe + O ↔ FeO;

4Fe + 3O2 ↔ 2Fe2O3;

3Fe + 2О2 ↔ Fe2O4.

Из оксидов в железе растворяется лишь закись. Окись и закись-окись практически не растворимы, вследствие чего их влияние на свойства железа не отмечается, но при определенных условиях они, присутствуя на неподготовленных кромках свариваемых металлов (в ржавчине, окалине), превращаются в закись согласно реакциям:

Fe2O3 + Fe = 3FeO;

Fe3O4 + Fe = 4FeO.

В этом случае закись железа растворяется в расплавленном металле и шлаке, что в сводных швах проявляется в виде пор (при охлаждении металла закись железа выпадает из раствора, но если скорость этого процесса высока, то закись сохраняется в растворе и формирует прослойки шлака между зернами металла), которые снижают качество сварки. Для уменьшения растворимости закиси (она зависит от содержания углерода в стали и температуры: при повышении первого снижается, при возрастании второй – увеличивается) в металле важно, чтобы ее концентрация в шлаке была низкой. Тогда закись будет переходить в шлак.

В зоне так называемой дуги имеются углекислый газ CO2 и пары воды H2O, которые тоже принимают участие в окислении железа, поскольку при их диссоциации выделяется активный кислород:

Fe + CO2 ↔ FeO + CO;

Fe + H2O ↔ FeO + H2.

Кроме того, металл окисляется под воздействием окислов кремния (SiO2) и марганца (MnO).

Чтобы снизить концентрацию кислорода в расплавленном металле сварочной ванны, прибегают к введению раскислителей, степень сродства которых к кислороду (степень активности окисления элемента кислородом) больше, чем у металла сварочной ванны.

Из воздуха в зону сварки поступает азот, который в зоне сварочной дуги присутствует и в атомарном, и в молекулярном, и в ионизированном состояниях. Его растворимость в железе определяется температурой. В процессе охлаждения шва азот выделяется из раствора, вступает в реакцию с металлом шва, в результате чего образуются такие химические соединения, как нитриды железа, марганца и кремния (Fe2 N, Fe4 N, MnN, SiN). Если охлаждение проходит с большой скоростью, то азот, не успевая полностью выделиться, вместе с металлом входит в перенасыщенный твердый раствор, что, с одной стороны, резко повышает прочность шва, а с другой – становится причиной постепенного старения металла шва и негативно сказывается на его механических свойствах (он утрачивает пластичность). Поэтому необходимо принимать меры по недопущению проникновения азота в зону сварочной ванны, что возможно, например, при осуществлении сварки в среде защитного газа.

При диссоциации водяных паров (они проникают в зону дуги из воздуха, флюса и др.), которая развивается в зоне сварки под воздействием высокой температуры, образуется еще один газ – водород. Он может быть и молекулярным, и атомарным, причем последний хорошо растворяется в расплавленном металле, особенно при повышении температуры. Когда она поднимается до 2400 °C, количество водорода составляет 43 см3 на 100 г металла (это максимальное значение).

По способности растворять водород металлы делятся на две группы:

– металлы, не вступающие в соединения с водородом (железо, никель, медь и др.);

– металлы, образующие при взаимодействии с водородом гидриды (ванадий, титан, редкоземельные элементы и др.).

Присутствующие в металле легирующие элементы по-разному воздействуют на растворимость водорода – могут либо повышать ее, либо понижать. К первым относятся титан и ниобий, а ко вторым – хром, алюминий, а также кремний и углерод.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сварочные работы. Практический справочник"

Книги похожие на "Сварочные работы. Практический справочник" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Галина Серикова

Галина Серикова - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Галина Серикова - Сварочные работы. Практический справочник"

Отзывы читателей о книге "Сварочные работы. Практический справочник", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.