» » » Рудольф Рэфф - Эмбрионы, гены и эволюция


Авторские права

Рудольф Рэфф - Эмбрионы, гены и эволюция

Здесь можно скачать бесплатно "Рудольф Рэфф - Эмбрионы, гены и эволюция" в формате fb2, epub, txt, doc, pdf. Жанр: Педагогика, издательство Мир, год 1986. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рудольф Рэфф - Эмбрионы, гены и эволюция
Рейтинг:
Название:
Эмбрионы, гены и эволюция
Издательство:
Мир
Год:
1986
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Эмбрионы, гены и эволюция"

Описание и краткое содержание "Эмбрионы, гены и эволюция" читать бесплатно онлайн.



В книге американских авторов излагаются факты и идеи о связи генетики, эмбриологии и эволюции. Основное внимание уделено представлению о том, что эволюция идет по преимуществу путем отбора значительных перестроек морфологии, обусловленных мутациями регуляторных генов.

Для специалистов по молекулярной биологии, эмбриологов, генетиков, эволюционистов, для студентов и преподавателей биологических факультетов.






Брайант и его сотрудники обнаружили, что позиционная информация, содержащаяся в имагинальных дисках, по-видимому, одинакова во всех дисках. У тех фрагментов дисков крыла, которые при нормальных условиях дуплицируются, можно индуцировать регенерацию, культивируя их совместно с реципрокными фрагментами, убитыми облучением. Убитые фрагменты не поставляют в регенерирующую структуру живые клетки, но, по-видимому, могут поставлять ей позиционную информацию. Информация эта может поступать, очевидно, не только от данного, но и от любого другого диска.

Рис. 9-4. Объяснение результатов регенерации и дупликации диска крыла у Drosophila melanogaster с помощью модели полярных координат. А. Примерная карта зачатков диска крыла. Б и В. Слева - два вида разреза этого диска. В обоих случаях меньший фрагмент дуплицируется, а в большем происходит регенерация недостающих элементов. Результат представлен справа от каждого разрезанного диска в терминах модели полярных координат. Новообразованные секторы показаны точками. Правила регенерации, соответствующие этой модели, изложены в тексте. (French, Bryant, Bryant, 1976.)


Приведем конкретный пример: проксимальный дуплицирующийся фрагмент диска крыла, подобный изображенному на рис. 9-4, А, можно индуцировать к регенерации дистальных структур крыла, выращивая его в присутствии убитых дистальных фрагментов диска крыла или диска жужжальца. Этот результат согласуется с данными о том, что гомеозисные мутации вызывают трансформации, которые сериально гомологичны, т.е. дистальные части антенны превращаются в дистальные части ноги. Отсюда следует, что позиционная информация во всех имагинальных дисках одинакова; различие состоит в том, как она интерпретируется. Было показано, что эта очевидная универсальность позиционной информации выходит даже за видовые границы. Тикле (Tickle) и его сотрудники показали, что ЗПА, взятая из задней части почки конечности мыши, способна передать информацию, необходимую для установления положения передне-задней оси конечности у цыпленка. Пересадив ЗПА мыши на передний край почки конечности цыпленка, можно индуцировать развитие у цыпленка добавочных пальцев. Сходный результат получили Фаллон и Кросби (Fallon, Crosby), используя ЗПА из зародышей черепахи. Поэтому создается впечатление, что информация, специфицирующая поле развивающейся конечности у позвоночных, в процессе эволюции оставалась неизменной, а изменения коснулись реакции клеток на эту информацию. Характер этой реакции почти наверное определяется различиями в генной экспрессии или, если говорить прямо, во включении генетических переключателей.

Роль двоичных переключателей в интерпретации позиционной информации

Возможный характер генетической реакции на позиционную информацию был описан в некотором формальном смысле Кауфманом (Kauffmann). Согласно его модели, гены, реагирующие на позиционную информацию, представляют собой набор двоичных переключателей, образующих каскады или сети. Эта модель схематически изображена на рис. 9-5. Первый ген этого пути, или каскада, дерепрессируется поступающей позиционной информацией. Эту активацию легче всего представить себе как простую реакцию на концентрацию. Если относительная концентрация морфогена достаточно высока, то переключатель приводится в соответствующее положение. Продукт первого гена в сети вызывает последующие переключения, активирующие другие гены, а продукты этих генов в свою очередь могут активировать новые локусы, что приводит к образованию каскада. Первоначальный ввод информации в систему не обязательно должен быть единичным; в модель вполне можно заложить множественные вводы, создавая избыточность и тем самым наделяя систему гомеостатическими свойствами. Если подходить к этой модели с позиций эпигенетического ландшафта Уоддингтона, то можно представить себе, что клетка проходит через ряд развилок, ведущих в долины, где на каждой развилке приводится в действие переключатель и принимается некое решение. Таким образом, на стадии выхода в каждой клетке запечатлен иерархический набор решений, связанных с выбором положений переключателей и представляющих собой уникальное отражение ее онтогенеза. Модель эта достаточно точно отражает реальное положение вещей, в чем можно убедиться на примере развития имагинального диска крыла у дрозофилы.

Гарсиа-Беллидо (Garcia-Bellido) и его сотрудники показали, что развитие диска слагается из ряда процессов компартментализации; иначе говоря, подобно тому как это происходит с полем конечности амфибии, оси данного имагинального диска определяются в результате ряда последовательных событий. Так же как и в случае поля конечности, сначала устанавливается передне-задняя ось, а за ней следуют дорсо-вентральная ось и три последовательных ограничения вдоль проксимально-дистальной оси. Каждый из образующихся при этом компартментов отделен от других, и клетки, находящиеся в одном из них, при нормальном течении развития неспособны преодолевать границы между компартментами. В крыле и груди имаго каждая клетка имеет единственное место назначения, связанное с рядом канализирующих событий, через которые она проходит в течение развития. Кауфман рассматривает эти события как отражающие ряд принятых двоичных решений. Так, клетку, находящуюся на переднем дистальном кончике крыла, следует пометить как передняя/не задняя, дорсальная/не вентральная, крыловая/не грудная, дистально-крыловая/не проксимально-крыловая. Используя модель химической волны, первоначально постулированную Тьюрингом (Turing), можно математически показать, что исходное эмбриональное поле можно последовательно подразделить серией узловых линий, положение которых зависит от первоначальной формы этого поля и от динамики роста, могущей изменить его форму или размеры. Диск крыла приближенно имеет форму эллипса. Рассмотрев особенности роста этого диска, можно предсказать местоположение узловых линий. Как показано на рис. 9-6, сходство между спроектированными на имагинальный диск действительными границами компартментов и расположением и последовательностью узловых линий очень велико. Кауфман, Шимко и Треберт (Kauffman, Shymko, Trabert) провели сходное сопоставление, спроектировав узловые линии на зародыш, находящийся на стадии клеточной бластодермы. В этом случае различные участки зародыша специфицируются в результате ряда последовательных двоичных решений. Как схематически показано на рис. 9-7, эта модель предсказывает, что зародыш делится поперек сначала надвое, затем на четыре части, далее на восемь и наконец делится в дорсо-вентральной плоскости. В пределах каждой ограниченной таким образом области клеткам можно приписать двоичный адрес при помощи четырех гипотетических переключателей, которые могут находиться в состоянии либо 0, либо 1. Так, первый переключатель находится в состоянии 1 в передней половине и в состоянии 0 - в задней. В следующем наборе зон, определяемых узловыми линиями, второй переключатель находится в состоянии 0 в передних и задних четвертях и в состоянии 1 - в двух центральных четвертях. В результате продолжения такого комбинаторного кодирования каждая область получает свое особое обозначение.

Рис. 9-5. Схема гипотетического набора генных переключателей, образующих замкнутый контур. Внешний индуктор или индукторы (морфогены) активируют ген А, который в свою очередь активирует ген В, ген В - ген С, а ген С - снова ген А, так что образуется замкнутый контур. Затем внешний индуктор можно удалить, но система остается при этом «включенной». В данной системе гены В и С действуют также и за пределами контура, активируя другие локусы (Kauffman, 1972; с изменениями).


Рис. 9-6. Схема реальных и теоретических пограничных линий между компартментами в имагинальном диске крыла Drosophila melanogaster. А. Линии наложены на карту презумптивных зачатков диска. Цифры возле каждой линии указывают на последовательность, в которой, согласно наблюдениям, границы между компартментами ограничивают потенции клеток в этом диске (пунктирная линия 4 на самом деле не наблюдалась). Б. Линии, предсказанные моделью Тьюринга для эллипса. Сходство между двумя схемами поразительно (Kauffman, Shymko. Trabert, 1978; с изменениями).


Аналогичная система обозначений была привлечена для того, чтобы объяснить, каким образом детерминируется индивидуальность каждой имагинальной структуры, образующейся в различных сегментах. Так, различным имагинальным дискам можно дать обозначения, используя коды с комплектом из пяти переключателей. Конечно, этой модели внутренне присуща известная иерархия, причем некоторые сегменты и диски в этой иерархии более тесно связаны между собой, чем другие. Этот аспект данной модели хорошо согласуется с замечаниями Хадорна (Hadorn) относительно трансдетерминационных событий между имагинальными дисками: когда фрагменты дисков, выращиваемых в культуре, переходят из одного детерминированного состояния в другое, это происходит совсем случайным образом. Как и в комбинаторном коде, при этом выявляется некая иерархия. Кроме того, некоторые трансдетерминации никогда не происходят, например диск крыла никогда не превращается в хоботок. Кауфман объясняет это тем, что в дифференцировке этих двух структур участвуют два набора переключателей, и для такого превращения оба они должны вступить в действие, что представляется в высшей степени маловероятным. Помимо того что комбинаторный код позволяет объяснить трансдетерминационные взаимоотношения, он согласуется также с гомеозисными превращениями, наблюдаемыми у дрозофилы. Используя кодовые обозначения, примененные для различных областей бластодермы (рис. 9-7), и наложив на эту карту положение имагинальных дисков, развившимся из них имагинальным структурам можно дать обозначения в соответствии с комбинаторным кодом.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Эмбрионы, гены и эволюция"

Книги похожие на "Эмбрионы, гены и эволюция" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рудольф Рэфф

Рудольф Рэфф - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рудольф Рэфф - Эмбрионы, гены и эволюция"

Отзывы читателей о книге "Эмбрионы, гены и эволюция", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.