Авторские права

С. Капица - Жизнь науки

Здесь можно скачать бесплатно "С. Капица - Жизнь науки" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Наука, год 1973. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
С. Капица - Жизнь науки
Рейтинг:
Название:
Жизнь науки
Автор:
Издательство:
Наука
Год:
1973
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Жизнь науки"

Описание и краткое содержание "Жизнь науки" читать бесплатно онлайн.



Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.






Геометрия,— так же как и арифметика,— требует для своего построения только немногих простых основных положений. Эти основные положения называются аксиомами геометрии. Установление аксиом геометрии и исследование их взаимоотношений — это задача, которая со времен Эвклида являлась темой многочисленных прекрасных произведений математической литературы. Задача эта сводится к логическому анализу нашего пространственного представления.

Настоящее исследование представляет собой новую попытку установить для геометрии полную и возможно более простую систему аксиом и вынести из этих аксиом важнейшие геометрические теоремы так, чтобы при этом стало совершенно ясно значение как различных групп аксиом, так и следствий, получающихся из отдельных аксиом.

***

Настоящая работа представляет собой критическое исследование основ геометрии; в этом исследовании нами руководил принцип разбирать каждый представившийся вопрос так, чтобы при этом исследовать, можно ли получить на него ответ на предначертанном заранее пути при помощи определенных ограниченных вспомогательных средств. Этот принцип содержит, как мне кажется, общее и естественное положение, когда мы при наших математических исследованиях встречаемся с некоторой проблемой или предполагаем справедливость некоторой теоремы, то наше стремление к познанию бывает удовлетворено лишь после того, как нам удастся полностью решить проблему и строго доказать теорему, или после того, как нами полностью осознается невозможность такого реше-пия (или доказательства) и тем самым становится очевидным, что все такие попытки неминуемо обречены на неудачу.

Поэтому-то в новой математике вопрос о невозможности определенных решений или неразрешимости некоторых задач играет выдающуюся роль, и стремление ответить на подобного рода вопрос часто служило толчком для открытия новых и плодотворных областей исследования. Напомним только о доказательстве Абеля невозможности решения уравнения пятой степени в радикалах, далее, о выяснении недоказуемости аксиомы о параллельных и, наконец, о теоремах Эрмита и Линдеман-на — о невозможности построить числа е я и алгебраическим путем.

Тот принцип, в силу которого следует повсюду выяснять условия возможности доказательства, теснейшим образом связан также с требованием «чистоты» методов доказательства — требованием, энергично выдвигаемым многими математиками. Это требование, в сущности, есть не что иное, как субъективное выражение принципа, которому мы здесь следовали. В настоящем геометрическом исследовании мы всюду стремились установить, какие аксиомы, предположения или вспомогательные средства необходимы для доказательства некоторой истины элементарной геометрии; какой метод доказательства следует предпочесть исходя из принятой только что точки зрения.

РАССЕЛ

(1872—1970)

Бертран Артур Вильям Рассел родился в Лопдоне в аристократической семье. Он получил прекрасное домашнее образование, затем оп поступил в Кембриджский университет, который с блеском окончил в 1894 г. Несколько месяцев он был атташе в Британском посольстве в Париже; год провел в Берлине, занимаясь историей немецкой социал-демократии. Возвратившись в Кембридж, он начинает работать в области оснований математики и математической логики. В 1903 г. Рассел публикует «Основы математики», а через два года выходит монография «Principia Mathematica», нанисапная совместно с Уайтхедом. Главным результатом этих исследований стало обнаружение противоречивости оснований теории множеств, сформулированной Расселом в виде его известных парадоксов. Сложность решения этой проблемы была сформулирована Расселом афористически: «Чистая математика — это такой предмет, где мы не знаем, о чем мы говорим, и не знаем, истинно ли то, что мы говорим».

В последующие годы Рассел по существу оставляет математику и основные силы уделяет фхглософпи, теории познания, этической и общественно-политической проблематике. Здесь невозможно дать даже краткое резюме исключительно раз-нообразпого и противоречивого творчества этого выдающегося мыслителя. Его деятельность была отмечена Нобелевской премией по литературе в 1954 г.

Жизнь Рассела так же полна противоречий, как и его работы. Во время первой мировой воины оп был исключен из колледжа и заключен в тюрьму за антивоенные выступления. Его взгляды на мораль и религию привели к высылке из США, куда он был приглашен читать лекции. После второй мировой войны Рассел, четко поняв всю опасность, которая угрожает человечеству в случае ядерного конфликта, активно выступил в защиту мира. В 1955 г. Рассел составил обращение к правительствам стран мира, подписанное вместе с Эйнштейном. Известие о его подписи Рассел получил вместе с сообщением о смерти своего друга.

Рассел дожил до глубокой старости: он умер на 98-м году жизни. За два года до этого он еще участвовал в сидячей демонстрации защитников мира па улицах Лондона.

Мы приводим предисловие к первому изданию «Основ математики» (1903).


ОСНОВЫ МАТЕМАТИКИ

У данной работы две главные цели. Одна состоит в доказательстве того, что вся чистая математика рассматривает исключительно только понятия, определенные через очень небольшое число основных логических понятий, и что все ее положения выводятся из очень небольшого числа основных логических принципов. Эта цель рассмотрена в II— YII частях этого тома и будет доказана путем строгого символического мышления во втором томе. Доказательство этого тезиса обладает, если только я не ошибаюсь, всей определенностью и точностью, на которую способно математическое доказательство. Поскольку этот тезис лпшь недавно появился среди математиков и почти полностью отрицается философами, в этом томе я предпринял защиту разных сторон этого тезиса по мере необходимости против тех теорий, которые наиболее распространены пли же наиболее трудны для опровержения. Я также попытался представить на возможно менее специализированном языке основные этапы рассуждений, которыми этот тезис устанавливается.

Другая цель этой работы, которой посвящена часть I, заключается в объяснении фундаментальных понятий, которые математика принимает как неопределяемые. Это чисто философский труд, и я не могу себе льстить тем, что сделал больше, чем только указал на обширную область исследований и дал примеры тех методов, которыми эти исследования можно вести. Обсуждение неопределяемых понятий — в чем заключена основная часть философской логики — представляет попытку увидеть ясно и заставить уяснить других рассматриваемые вещи так, чтобы они предстали разуму с той же полнотой и наглядностью, как цвет или вкус ананаса. Когда неопределяемые, как в данном случае, получаются первоначально как неизбежный остаток в процессе анализа, то часто проще знать, что такие понятия должны существовать, чем их действительно познать. Этот процесс аналогичен тому, который привел к открытию Нептуна, с той лишь разницей, что заключительная стадия — поиски с помощью мысленного телескопа вещей, о существовании которых сделано предположение,— часто бывает наиболее трудной частью всего исследования. Я должен признать, что в случае классов я не смог предложить какого-либо понятия, удовлетворяющего условиям, сформулированным для понятия класса. И противоречие, обсуждаемое в X главе, показывает на то, что что-то упущено, однако, что именно, я до сих пор не смог установить.

Второй том, к работе над которым мне удалось привлечь А. Уайтхеда, будет обращен исключительно к математикам. В нем будут содержаться цепочки рассуждений, начинающиеся с посылок символической логики и ведущие через арифметику как конечного, так и бесконечного к геометрии в том же порядке, как это принято и в настоящем томе. В нем будут содержаться также различные оригинальные выводы, в которых метод профессора Пеано, дополненный логикой отношений, показал себя могучим инструментом исследований.

Данный том, который можно рассматривать либо «как комментарий, либо как введение ко второму тому, в равной мере адресован философу и математику. В некоторых своих частях он будет более интересен одному, а в других — другому. Математикам, если только они не заинтересованы специально в символической логике, я могу посоветовать начать с части IV и обращаться к начальным главам толькб по мере необходимости. Более философский характер имеют следующие разделы: часть I (без главы II); часть И: главы XI, XV, XVI, XVII; часть III; часть IV: § 207, главы XXVI, XXVII, XXXI; часть V: главы XLI, XLII, XLIII; часть VI: главы I, LI, LII; часть VII: главы LIII, HV, LV, LVII, LVIII, а также два приложения, относящиеся к части I, которые следует читать в связи с ними. Работа профессора Фреге, которая в значительной мере предвосхищает мою, была гае большей частью неизвестной, когда началось печатание данного труда. Я видел его «Основы арифметики»; однако нз-за большой трудности его символики я не мог ни оценить ее важность, ни принять ее содержание. Единственный способ, на столь поздней стадии, отдать должное его работам состоял в том, чтобы посвятить им приложение. Но в некоторых пунктах взгляды, содержащиеся в приложении, отличаются от тех, которые даны в главе VI, особенно в §§ 71, 73, 74. Я обнаружил ошибки в вопросах, рассматриваемых в этих параграфах, уже после того, как материал поступил в печать. Эти ошибки, из которых основная заключается в отрицании нулевого класса и отождествлении элемента с классом, единственным элементом которого он является, исправлены в приложениях. Рассматриваемые вопросы столь трудны*, что я не стал бы настаивать на настоящих своих мнениях и рассматриваю всякие выводы, которых можно придерживаться как существенно гипотетических.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Жизнь науки"

Книги похожие на "Жизнь науки" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора С. Капица

С. Капица - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "С. Капица - Жизнь науки"

Отзывы читателей о книге "Жизнь науки", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.