» » » » Терлецкий Давидович - Металлы, которые всегда с тобой


Авторские права

Терлецкий Давидович - Металлы, которые всегда с тобой

Здесь можно скачать бесплатно "Терлецкий Давидович - Металлы, которые всегда с тобой" в формате fb2, epub, txt, doc, pdf. Жанр: Природа и животные, издательство Знание, год 1986. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Терлецкий Давидович - Металлы, которые всегда с тобой
Рейтинг:
Название:
Металлы, которые всегда с тобой
Издательство:
Знание
Год:
1986
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Металлы, которые всегда с тобой"

Описание и краткое содержание "Металлы, которые всегда с тобой" читать бесплатно онлайн.



Металлы, находящиеся в незначительных количествах внутри живого организма, называют микроэлементами. Это не случайные примеси, а важнейшие составляющие биологически активных веществ: они обеспечивают нормальный ход биохимических процессов, стимулируют обмен веществ, активно участвуют в кроветворении, влияют на рост, размножение и наследственность организмов. Вот почему их еще называют металлами жизни. Эта книга о десяти важнейших биометаллах, о трудном пути познания роли для всего живого...






В прошлом, в том числе и недалёком, люди чаще всего угорали, когда топили печи. Конечно, в наш благословенный век центрального отопления с печами в быту приходится иметь дело редко. Однако случаев отравления окисью углерода не становится меньше, ибо она содержится и в выхлопах двигателей внутреннего сгорания, и в горючих газах, нашедших самое широкое применение. Даже в небе подчас нет спасения от этого врага. Криминалисты полагают, что некоторые авиационные катастрофы происходят из-за повышения концентрации окиси углерода, возникающего при износе двигателей или плохой их регулировке. Проникая в кабину, угарный газ может явиться причиной отравлений экипажа. Современные воздушные лайнеры оборудованы герметичными кабинами, имеющими системы наддува и вентиляции, что значительно снижает вероятность вредного воздействия выхлопных газов двигателя.

Спасительное средство при отравлении угарным газом — свежий воздух. Этим и были продиктованы уверенные действия Холмса — ведь Конан Дойл был врачом... Свежий воздух! Когда он наполняет наши лёгкие, кровь становится алой. Это оксигемоглобин разносит по артериям кислород. Отработанная — венозная —. кровь имеет характерный вишнёво-красный цвет: она насыщена углекислотой, которую транспортирует карбогемоглобин. Гемоглобин, связанный с окисью углерода, получил название карбоксигемоглобин. Во всех этих видах гемоглобин обладает свойством обратимого соединения с кислородом, углекислым газом и окисью углерода.

Хуже обстоит дело, когда под влиянием ядовитых веществ, таких, например, как анилин или нитраты, железо в теме из двухвалентного переходит в трёхвалентное. Образуется метгемоглобин, не способный переносить кислород.

И все же не будем сетовать на природу — описанные явления представляют редкое исключение. По сути же, все в ней устроено наисовершеннейшим образом. Образец такого устройства — математически точная связь гемоглобина и кислорода, которая обеспечивает дыхание.

Арифметика крови

Всякий, кому приходилось сдавать кровь на анализ, получив результат, прежде всего интересуется содержанием гемоглобина. О чем говорят цифры? Кровь здорового человека содержит от 13 до 16 % гемоглобина, причём за 100 % принято его содержание в 100 мл, равное 16,7 г. Но так как в нормальной крови 100 % гемоглобина не бывает, то, скажем, 80 %, правильнее — единиц, означает содержание в 13,4 г.

Молекулярная масса гемоглобина примерно 66 500. На долю гема в этой молекуле приходится 3,15 %, а на долю железа — 0,35 %. В молекуле гемоглобина содержится всего четыре атома железа, но они умеют многое. Вот что установлено. При вдохе 1 мл крови соприкасается с 1,48 см воздуха. Оказывается, число молекул кислорода, содержащееся в этом объёме, соответствует числу атомов железа во всех эритроцитах, находящихся в 1 мл крови. Иными словами, 1 г гемоглобина связывает 1,34 см3 кислорода.

Эти цифры показывают, как чётко и слаженно должен работать наш организм, чтобы строго в единицу времени направлять в кровь из запасников определённое количество эритроцитов, чтобы вырабатывать в костном мозге нужное количество гемоглобина, чтобы сердце подавало точно отмеренный расход крови, чтобы лёгкие ритмично делали вдох и выдох.

И все же многое ещё неясно в механизме доставки кислорода гемоглобином. Этот процесс, как представляется сегодня, не может быть связан только простыми количественными соотношениями. Возможно, в крови происходят ещё какие-то, пока невыясненные каталитические процессы.

Не весь кислород, доставляемый гемоглобином, сразу же идёт в дело. Часть его остаётся в мышцах и вот для чего. Когда из-за сокращения мышц многие кровеносные сосуды оказываются сдавленными, доставка кислорода обычным путём крайне затруднена. Поэтому и приходится держать наготове запас кислорода.

Эстафету гемоглобина в мышцах принимает другой гемосодержащий белок — миоглобин. Это «младший брат» гемоглобина. Окраска миоглобина также зависит от содержания в нем железа.

Вот почему мясо красное. Традиционное же мнение — потому, что оно пропитано кровью,— не верно. Кровь тут совершенно ни при чем.

А заблуждение насчёт того, что красный цвет мышцам, а значит и мясу, придаёт кровь, бытует давно. Об этом ещё в 1726 году упоминает известный швейцарский естество испытатель, академик Петербургской академии наук Д. Бернулли в своём труде «О движении мышц». Только в 1883 году появилось исследование русского учёного К- С. Мережковского, в котором высказывался совершенно новый для того времени взгляд на функцию так называемо го мышечного гемоглобина в организме. В дальнейшем было установлено различие между гемоглобином крови и гемоглобином мышц — его-то в 1921 году и назвали многлобином.

Гемоглобин под рентгеном

Окончательная разгадка строения молекул гемоглобина и миоглобина связана с именами известных учёных Макса Перутца и Джона Кендрю, начинавших свою деятельность в знаменитой Кавендишской лаборатории Кэмбриджского. университета в Англии. Именно там был разработан, рентгеноструктурный анализ, сыгравший исключительную роль не только в исследовании кристаллов белков, но также самой, пожалуй, знаменитой молекулы дезоксирибонуклеиновой кислоты (ДНК). Однако это произойдёт позже, в 50-е годы. А пока, во второй половине 30-х годов, М. Перутц, австриец по происхождению, стажируется в Кавендишской лаборатории. Его привлекал рентгеноструктурный анализ. А так как он интересовался ещё и биохимией, то обратил внимание на гемоглобин и химотрипсиы, дававшие хорошие кристаллы.

Вскоре выяснилось, что химотрипсин чрезвычайно труден для исследования, и Перутц сосредоточился только, на гемоглобине. Но и гемоглобин оказался не менее крепким орешком. Понадобилось чуть ли не 30 лет (!), прежде чем удалось установить его строение. Разумеется, Перутц на такой срок работы не рассчитывал. Однако он отдавал себе отчёт, что берётся за весьма нелёгкую задачу. Много позднее он по этому поводу не без иронии говорил: «...Когда темой своей диссертации я выбрал рентгено-структурный анализ гемоглобина, мои товарищи не могли смотреть на меня без сожаления. В ту пору самым сложным органическим вещёством, структура которого была установлена с помощью рентгеноструктурного анализа, оставалась молекула красителя фталоцианина, состоящая из 58 атомов. Как мог я надеяться выяснить расположение тысяч атомов в молекуле гемоглобина?»

В 1946 году к Перутцу присоединился армейский офицер королевских ВВС Дж. Кендрю, который после демобилизации решил посвятить себя молекулярной биологии. До войны здесь же в Кембридже, в Тринити-колледже, он блестяще окончил курс естественных наук, получив степень бакалавра, а затем и магистра (примерно соответствующую нашей кандидатской).

К приходу Кендрю результаты десятилетних усилий Перутца в исследовании гемоглобина были весьма скромными. Поэтому Кендрю выбрал себе более простой объект для экспериментов — миоглобин кашалота. Этот белок в больших количествах был найден в мышцах китов и тюленей, что и объясняет их способность долго находиться под водой. Мы уже знаем о том, что молекулы кислорода переходят от гемоглобина к миоглобину, где и хранятся надёжно, пока не потребуются клетке.

Долгие годы неудач не сломили Перутца. Он не отступил. Стало ясно, что нужно менять тактику исследований. Обычные методы рентгеноструктурной дифракции оказались недостаточными для расшифровки чрезвычайно сложной молекулы гемоглобина.

В то время руководителем Кавендишской лаборатории был У. Л. Брэгг, нобелевский лауреат, один из основателей рентгеноструктурного анализа. Естественно, что он был живо заинтересован в установлении структур белковых молекул — сложнейших в природе. Он постоянно наблюдал за ходом экспериментов и частенько захаживал в лабораторию Перутца, чтобы взглянуть на свежие рентгенограммы: Потом сэр Брэгг отправлялся домой и на досуге долго размышлял над полученными результатами.

Изготовление рентгенограммы кристалла () — лишь половина дела. Далее пятна на снимке, соответствующие определённым структурным центрам, с помощью специального оптического прибора преобразуют в ряд дифракционных полос. Затем их совмещают, и только тогда получают нечто вроде контурных карт, по которым определяют строение вещёства.

Чтобы добиться изображения, отражающего реальную структуру, нужно правильно расположить набор дифракционных полос по отношению к определённой, но произвольно выбранной исходной точке. Получая такой набор, довольно легко определить амплитуду волны. Но не её фазу! Здесь-то «зарыта собака» всей многолетней проблемы: изображений могло получиться бесчисленное множество— в соответствии с выбранной фазой для каждого ряда полос. Попробуй, угадай, какое из них правильное.

Вот как сам Перутц писал про это: «Сама по себе рентгенограмма говорит нам только об амплитудах, но ничего не говорит о фазах полос, которые даёт каждая пара пятен; таким образом, половина информации, необходимой для получения изображения, отсутствует. Из-за этого рентгенограмма кристалла оказывается иероглифом без ключа для его расшифровки. Терпеливо измеряя в течение ряда лет интенсивность нескольких тысяч пятен на рентгенограммах гемоглобина, я испытывал танталовы муки, которые может понять только исследователь, заполучивший коллекцию табличек с надписями на неизвестном языке. ...Мы с Брэггом пытались разработать методы расшифровки фаз, но не добились большого успеха».


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Металлы, которые всегда с тобой"

Книги похожие на "Металлы, которые всегда с тобой" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Терлецкий Давидович

Терлецкий Давидович - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Терлецкий Давидович - Металлы, которые всегда с тобой"

Отзывы читателей о книге "Металлы, которые всегда с тобой", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.