» » » » Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики


Авторские права

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь можно скачать бесплатно "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство КоЛибри, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Рейтинг:
Название:
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Издательство:
КоЛибри
Жанр:
Год:
2012
ISBN:
978-5-389-01770-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Описание и краткое содержание "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать бесплатно онлайн.



Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!






Начав с первого члена и прибавляя один за другим остальные, получаем следующую последовательность (записанную в виде десятичных дробей):

4 → 2,667 → 3,467→ 2,895 → 3,340 → …

Сумма подходит к числу π все ближе и ближе, а результат скачет все меньше и меньше. Тем не менее этот метод требует более 300 членов, чтобы ответ имел точность в два десятичных знака, так что он практически непригоден для тех, кто желает найти большее число цифр в десятичном разложении числа π.

В конце концов с помощью анализа удалось получить другие бесконечные ряды для π, менее симпатичные на вид, но более эффективные для действий с числами. В 1705 году астроном Абрахам Шарп применил такой ряд для вычисления π с точностью до 72 десятичных знаков, сокрушив продержавшийся столетие рекорд ван Цейлена, составлявший 35 знаков. Да, это было достойным достижением, но в нем было мало пользы. Решительно нет никаких практических причин для того, чтобы знать число π с точностью до 72 знаков, да, впрочем, и до 35 тоже. Инженерам, имеющим дело с прецизионными инструментами, вполне хватает четырех десятичных знаков, а чтобы вычислить длину окружности Земли с точностью до долей сантиметра, достаточно десяти знаков. Если взять 39 десятичных разрядов, то окажется возможным посчитать длину окружности, охватывающей всю известную нам Вселенную, с точностью порядка радиуса атома водорода. Дело, однако, было вовсе не в практической целесообразности — отнюдь не практические соображения двигали учеными эпохи Просвещения, одержимыми вычислением числа π. Цель охоты за цифрами заключалась в самой охоте, это было романтическое приключение. Через год после предпринятых Шарпом усилий Джон Мэчин добился точности в 100 знаков, а в 1717 году француз Тома де Ланьи прибавил к ним еще 27. К началу следующего столетия вперед вырвался Юрий Вега из Словении со своими 140 знаками.

В 1844 году, с головой погрузившись в работу на два месяца, немецкий молниеносный эстрадный вычислитель Захария Дазе отодвинул рекорд вычисления числа π до отметки 200 десятичных знаков. Дазе использовал ряд, который хотя на вид и сложнее, чем приведенная выше формула для π, но на самом деле гораздо удобнее в употреблении. Во-первых, потому что он сходится к π с неплохой скоростью. Точность в два десятичных знака достигается уже после первых девяти членов. Во-вторых, с дробями 1/2, 1/5 и 1/8, которые все время появляются в каждом третьем члене, удобно иметь дело. Если записать 1/5 как 1/10, a 1/8 — как 1/2 × 1/2 × 1/2, то все необходимые действия с этими членами можно свести к комбинациям удвоения и взятия половины. Дазе выписал справочную таблицу, к которой обращался в ходе вычислений, начиная с 2, 4, 8, 16, 32 и далее по мере надобности. Поскольку он выполнял вычисления числа π с точностью до 200 знаков, полученное в самом конце удвоение будет иметь 200 цифр в длину. Это происходит после 667 последовательных удвоений.

Дазе использовал такое разложение:

Отсюда π = 4(0,825 - 0,0449842 + 0,00632 - …).

Учет одного члена дает 3,3,

учет двух членов — 3,1200

и учет трех — 3,1452.

Дазе недолго почивал на лаврах, поскольку на его рекорд очень скоро нацелились британцы, и по прошествии десяти лет Уильям Резерфорд вычислил π с точностью в 440 знаков. Он побуждал своего протеже Уильяма Шэнкса — математика-любителя, который держал школу с пансионом в графстве Дарэм, — не останавливаться на достигнутом. В 1853 году Шэнкс достиг 607 знаков, а в 1874-м — 707. Его рекорд продержался семьдесят лет, пока Д. Ф. Фергюсон из Королевского морского колледжа в Честере не нашел ошибку в вычислениях Шэнкса. Шэнкс сделал ошибку в 527-м знаке, а потому и все последующие тоже были неправильными. Фергюсон провел последний год Второй мировой войны, вычисляя число π вручную, и к маю 1945 года достиг 530 знаков. К июлю 1946-го он дошел до 620, и более никто никогда не вычислял π с помощью лишь ручки и листа бумаги.

Фергюсон был последним, кто охотился за цифрами вручную, и первым, кто стал делать это, используя технику. Благодаря настольному калькулятору он прибавил почти 200 новых разрядов всего за год, так что в сентябре 1947 года π было известно с точностью до 808 десятичных знаков. А затем компьютеры изменили правила игры. Первым компьютером, сразившимся с π, был Электронный числовой интегратор и вычислитель ENIAC, построенный в последние годы Второй мировой войны по заказу армии США в Лаборатории баллистики в Мэриленде. Размером он был с небольшой дом. В сентябре 1949 года ENIAC за 70 часов работы вычислил π с точностью в 2037 знаков, побив предыдущий рекорд более чем на тысячу десятичных разрядов.

* * *

По мере появления новых знаков в числе π становилось все более ясно, что найденные числа не подчиняются никакому очевидному порядку. Однако только в 1767 году математики смогли доказать, что сумбурная последовательность цифр числа π никогда не повторяется. Это открытие вытекало из рассмотрения вопроса о том, числом какого типа может быть π.

Числа самого простого типа — натуральные. Это числа для счета, начинающиеся с единицы:

1, 2, 3, 4, 5, 6 …

Натуральные числа, однако, имеют некоторое ограничение, поскольку идут только в одном направлении. Более полезны целые числа, которые состоят из натуральных, нуля и отрицательных натуральных чисел:

… -4, -3, -2, -1, 0, 1, 2, 3, 4 …

Любое положительное или отрицательное целое число от минус бесконечности до плюс бесконечности входит в целые числа. Если бы нашлась гостиница с неограниченным числом этажей, а также с неограниченным числом все более глубоких подземных уровней, то кнопками в лифте там были бы все целые числа.

Числа другого основного типа — это дроби, которые представляют собой числа, записанные в виде a/b, где а и b — целые, причем b не равно 0. Поскольку дроби эквивалентны отношениям между целыми числами, они также называются рациональными числами[27], и их бесконечно много. На самом деле имеется бесконечно много рациональных чисел уже между 0 и 1. Давайте, например, возьмем дробь, числитель которой равен 1, а знаменатель — натуральное число, больше или равное 2. Это дает множество, составленное из

Можно пойти дальше и доказать, что имеется бесконечно много рациональных чисел между любыми двумя рациональными числами. Пусть с и d — любые два рациональных числа, причем с меньше d. Точка на полпути между с и d представляет собой рациональное число — оно равно (c + d)/2. Назовем эту точку e. Теперь можно найти точку на полпути между c и e. Это (c + e)/2 — рациональное число, которое также лежит между с и d. Будем продолжать так до бесконечности, каждый раз разбивая расстояние между с и d на все меньшие и меньшие части. Не важно, сколь малым было расстояние между с и d в самый первый раз — между ними всегда найдется бесконечно много рациональных чисел.

Поскольку между любыми двумя рациональными числами всегда можно найти бесконечно много рациональных чисел, можно было бы подумать, что каждое число — рациональное. Без сомнения, именно на это одно время и надеялся Пифагор. Его метафизика основывалась на вере в то, что мир состоит из чисел и гармонических пропорций между ними. Существование числа, которое нельзя описать как отношение, по крайней мере сильно ослабляло его позиции, если не прямо им противоречило. Но, к несчастью для Пифагора, имеются числа, которые нельзя выразить в виде дроби, и к его немалому конфузу, одно из них дает его собственная теорема. Если взять квадрат со стороной, равной единице, то длина его диагонали равна квадратному корню из двух, а это число нельзя записать в виде дроби. (Доказательство — в приложении 2 на веб-сайте, посвященном этой книге.)

Числа, которые нельзя записать в виде дроби, называются иррациональными. Согласно легенде, их существование впервые доказал ученик Пифагора Гиппас, что, однако, не подарило ему симпатии Пифагорейского братства: его объявили отступником и утопили в море.

Когда рациональное число записано в виде десятичной дроби, оно всегда или содержит конечный набор цифр, как, например, 1/2, которая записывается в виде 0,5, или же разложение рано или поздно начинает повторяться, как, например, для числа 1/3, которое записывается в виде 0,3333…, где тройки продолжаются без конца. Иногда число «зацикливается» через более чем одну цифру — так обстоит дело с дробью 1/19, которая записывается как 0,0526315789473684210…, где 18-значный период 526315789473684210 повторяется до бесконечности. Наоборот — и в этом-то все дело! — когда число иррационально, его десятичное разложение никогда не будет повторять само себя.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Книги похожие на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алекс Беллос

Алекс Беллос - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Отзывы читателей о книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.