» » » » Владимир Кирсанов - Научная революция XVII века


Авторские права

Владимир Кирсанов - Научная революция XVII века

Здесь можно скачать бесплатно "Владимир Кирсанов - Научная революция XVII века" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Наука, год 1987. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Кирсанов - Научная революция XVII века
Рейтинг:
Название:
Научная революция XVII века
Издательство:
Наука
Год:
1987
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Научная революция XVII века"

Описание и краткое содержание "Научная революция XVII века" читать бесплатно онлайн.



Книга посвящена формированию основных представлений классической науки в XVII в., процессу, который получил название научной революции. Основное место отведено физико-математическим наукам, в развитии которых ярче всего отразились основные черты научной революции. Прослеживаются главные линии этого процесса, связанные в первую очередь с именами Кеплера, Галилея, Декарта, Гюйгенса и Ньютона. Большое внимание уделено первоисточникам — многие отрывки из научных трудов и переписки создателей новой науки публикуются на русском языке впервые. Учтены результаты позднейших исследований по истории науки, которые позволяют по-новому взглянуть на многие события того времени.






Метод оценки суммы расстояний по площади сектора, указывает Кеплер, содержит две неточности: во-первых, предполагается, что орбита планеты есть окружность, во-вторых, что площадь эксцентрического сектора не является точной мерой суммы расстояний от Солнца. Однако он добавляет, что в главе 59 «Новой астрономии», где вводится эллиптическая орбита, эти ошибки уничтожаются «как по волшебству». Ряд комментаторов неправильно интерпретирует это утверждение Кеплера, полагая, что доказательство закона площадей в главе 59 основано на взаимно компенсирующихся ошибках. (Заметим к этому, что Деламбр, проверивший кеплеровские вычисления, обнаружил, что Кеплер действительно допустил ряд ошибок в расчетах, которые, взаимно уничтожившись, дали в конце концов правильный результат.) На самом деле ошибки, о которых говорит Кеплер (и те, о которых говорит Деламбр), не имеют отношения к корректности доказательства.

Смысл этого замечания Кеплера в том, что если принять орбиту за эллипс и выбрать точную меру суммы расстояний, то закон площадей, введенный неявно в главе 40 «Новой астрономии» в качестве приближенного закона, станет вполне точным. Однако к тому времени, когда Кеплер впервые осознал возможность использования площади эксцентрического сектора в качестве меры суммы расстояний, ни то, ни другое еще не было сделано. Он открыто призывал математиков присоединиться к нему в усилиях отыскать точную меру суммы расстояний, а пока принимал, что мера времени t, потребного для перемещения планеты по дуге CG, может быть выбрана как β + e∙sinβ, так как площадь сектора GCA есть ½ ∙ СР + e sin β). Более того, он указывал, что этот «неточный метод решения уравнения на основе физической гипотезы достаточен для орбиты Солнца или Земли».

Действительно, для орбиты Земли, обладающей относительно малым эксцентриситетом, наблюдения довольно прилично сходились с расчетами, но уже для Марса, у которого эксцентриситет в 5,5 раз больше, расхождение данных наблюдения с расчетами истинной аномалии, основанными на законе площадей и гипотезе круговой орбиты, получалось равным 8 минутам. Такое расхождение до Кеплера могло вполне считаться удовлетворительным, так как 10 минут было обычной точностью наблюдений во времена Коперника, но Кеплер не мог этим удовлетвориться. «Благодаря божественной щедрости нам был дарован столь скрупулезнейший наблюдатель в лице Тихо Браге, что его наблюдения доказывают ошибочность этого птолемеевского расчета для Марса с расхождением в 8 минут; нам следует с благодарностью принять этот подарок Господень и пестовать <его>… Теперь, поскольку невозможно не обратить на это внимание, одни эти восемь минут указывают путь к перестройке всей астрономии»[5] {6, III, с. 258}.

Получив расхождение в 8 минут, Кеплер заметил, что оно не могло возникнуть в результате ошибки в законе площадей: во-первых, оно было слишком большим, а во-вторых, — и это главное — оно было противоположно по знаку тому, которое должно было бы возникнуть из-за неточности в выборе меры суммы расстояний. Поэтому Кеплер пришел к выводу, что окружность не является истинной формой орбиты Марса. Сравнивая положения Марса, рассчитанные на основе гипотезы о круговой эксцентрической орбите, с тремя наблюденными положениями, он нашел, что эти наблюденные положения лежат внутри круга. Так Кеплер пришел к предположению, что орбитой планеты является овал.

Приняв, что орбитой Марса является овал, Кеплер столкнулся с необходимостью вычисления площадей секторов овала, чего он делать не умел. О задаче вычисления площадей секторов овала Кеплер писал Фабрициусу в июле 1603 г.: «Если бы фигура была точным эллипсом, то Архимеда и Аполлония было бы достаточно».

Единственное, что ему оставалось, это вычислять площади приближенно, заменив овал эллипсом. Так он и поступил. Надо отметить, однако, что эллипс, аппроксимирующий овал, не совпадал с истинной эллиптической орбитой, а помещался внутри нее. С другой стороны, Кеплер не был вполне уверен в правомочности такой аппроксимации, так как и без того площадь сектора являлась лишь приближенной мерой суммы расстояний, и в своем исследовании овальной орбиты предпочитал работать непосредственно с расстояниями.

В конце 1604 г. Кеплер пришел к выводу, что его предположение о данной овальной форме орбиты неверно, так как получались слишком большие ошибки в расчетах по сравнению с наблюдениями. Более того, оказалось, что для круга и для овала ошибки в значениях истинной аномалии получались численно равными и противоположными по знаку. Стало ясно, что истина должна находиться где-то посредине этих двух крайностей, а между окружностью и овалом как раз помещался эллипс, соответствующий истинной орбите Марса. Кеплер увидел это, но не придал этому никакого значения. Если бы он просто искал геометрическую кривую, удовлетворяющую данным наблюдений, он, безусловно, поступил бы иначе, и все его поиски закончились бы на этом этапе. Но Кеплер не был удовлетворен, потому что не мог принять гипотезу, не имеющую физического обоснования. А физических причин существования эллиптической орбиты он пока еще привести не мог. Поэтому он продолжал работать с овалом, хотя мысль об эллипсе, по-видимому, подсознательно уже присутствовала в процессе его исследований.

Неотвязная мысль об эллипсе натолкнула его на одно удивительное совпадение. Оказалось, что для β = 90° разность между расстоянием от Солнца, до Марса в модели эксцентрика и радиусом круга в точности равна боковому сжатию орбиты, т. е. разности между радиусом круга и малой полуосью эллипса, лежащего посредине между кругом и овалом. Такое совпадение вряд ли могло быть случайным, и недаром Кеплер «удивлялся, почему и каким образом появился серп такой толщины (0,00429)». Далее он говорит: «В то время как эта мысль не давала мне покоя и я снова и снова думал о том, что… мой кажущийся триумф над Марсом оказался мнимым, вдруг мое внимание привлек секанс угла 5°18′, который является мерой наибольшего оптического уравнения.[6]

Можно было подумать, что, пробудившись ото сна, Кеплер наконец понял, что эллипс является истинной орбитой. Ничуть не бывало! Раз нет физической основы, эта гипотеза все еще кажется ему неприемлемой, и он продолжает строить овалы. Но все же из этого совпадения Кеплер сделал важный вывод: надо работать с секансами и, следовательно, с проекциями расстояния на соответствующий диаметр эксцентрика. Он называет эти проекции диаметральными расстояниями. Легко видеть, что диаметральное расстояние для эксцентрической аномалии β = ∠GBC есть HG и оно равно 1 + е cos β. Кеплер уже показал, что площадь есть точная мера суммы диаметральных расстояний. Действительно, для дуги GC сумма диаметральных расстояний есть

а именно этой величине равняется удвоенная площадь сектора GCA. Кеплер также доказал, что для модели деферента с эпициклом, эквивалентной эксцентрику, изменение диаметрального расстояния представляется либрацией (смещением) точки γ по диаметру эпицикла. Зависимость изменения диаметрального расстояния от эксцентрической аномалии описывается в этом случае формулой е∙(1—cosβ).

К понятию диаметрального расстояния эпицикла Либрация точки γ по диаметру

«Наконец, после шести лет невообразимых усилий, — восклицает Артур Кёстлер, автор одной из лучших биографий Кеплера, — он нашел секрет марсианской орбиты. Он смог найти формулу, согласно которой изменяется расстояние планеты от Солнца в зависимости от ее положения. В этой простой формуле выражен математический закон природы (имеется в виду выражение для диаметрального расстояния r = l + e∙cos β.— В. К.). Но он все еще не понимал, что именно эта формула и обозначает в точности, что орбитой является эллипс» {5, с. 146}.

Нет ничего удивительного в том, что в этой формуле Кеплер не увидел эллипса. Без знания аналитической геометрии это и нельзя было сделать. И в условиях своего времени Кеплер пошел по вполне оправданному пути: он решил выяснить физическую причину либрации.

Для этого ему пришлось существенно изменить свою модель Вселенной. Под влиянием работ Уильяма Гильберта Кеплер решил, что эксцентрическое движение планет определяется магнитными взаимодействиями, а не загадочными собственными силами планет. Он предположил, что внешняя оболочка каждой планеты вращается вокруг своей оси благодаря наличию замкнутых силовых линий, окружающих планету, при этом ее ось сохраняет свое направление в пространстве вследствие существования другой системы силовых линий, которые параллельны этой оси. Наконец, изменение расстояния от Солнца определяется действием магнитного ядра планеты, ось которого перпендикулярна линии апсид.

Позднее в «Кратком очерке коперниканской астрономии» Кеплер объяснил это действие тем, что Солнце, по его представлению, обладает единственной эффективной полярностью, как если бы одноименный магнитный заряд был равномерно распределен по его поверхности. Удаление и приближение планеты будет в таком случае зависеть от степени взаимодействия ее магнитного ядра с магнитным полюсом Солнца. Степень этого взаимодействия определяется по аналогии со световым или тепловым действием солнечных лучей, падающих на поверхность под углом. Точно так же как нагревание зависит от синуса угла наклона поверхности к направлению луча, синус истинной аномалии будет, по Кеплеру, мерой взаимодействия Солнца с магнитным ядром планеты. Поскольку в аристотелевской физике скорость пропорциональна силе, то смещение планеты вдоль радиуса-вектора, или либрация, в модернизованной записи будет пропорциональна sin ν dt, где ν —истинная аномалия.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Научная революция XVII века"

Книги похожие на "Научная революция XVII века" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Кирсанов

Владимир Кирсанов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Кирсанов - Научная революция XVII века"

Отзывы читателей о книге "Научная революция XVII века", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.