» » » » Стивен Строгац - Удовольствие от Х

Стивен Строгац - Удовольствие от Х

Здесь можно скачать бесплатно "Стивен Строгац - Удовольствие от Х" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая старинная литература, издательство Манн, Иванов и Фербер, год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Стивен Строгац - Удовольствие от Х
Рейтинг:

Название:
Удовольствие от Х
Издательство:
Манн, Иванов и Фербер
Год:
2014
ISBN:
9785000570081
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Удовольствие от Х"

Описание и краткое содержание "Удовольствие от Х" читать бесплатно онлайн.








Я надеюсь, что все идеи, описанные в этой книге, покажутся вам увлекательными и не раз заставят воскликнуть: «Ну и ну!» Но всегда с чего-то нужно начинать, поэтому давайте начнем с простого, но такого завораживающего действия, как счет.

1. Основы чисел: сложение рыбок

Лучшую демонстрацию концепции чисел, которую я когда-либо видел (самое ясное и забавное объяснение того, что такое числа и зачем они нам нужны), я наблюдал в одном из выпусков популярной детской передачи «Улица Сезам», который называется «123: считаем вместе» (123 Counter with Me). Хамфри, добродушный, но недалекий персонаж с розовой шерсткой и зеленым носом, работающий в отеле «Мохнатые лапы», в обеденное время принимает по телефону заказ от пингвинов-постояльцев. Внимательно их выслушав, Хамфри передает заказ на кухню: «Рыбка, рыбка, рыбка, рыбка, рыбка, рыбка». Увиденное побуждает Эрни рассказать Хамфри о достоинствах числа шесть.

Дети узнают, что числа — великолепный инструмент, который позво­ляет получить нужное количество порций быстрее. Вместо того чтобы повторять слово «рыбка» столько раз, сколько пингвинов в комнате, Хамфри может использовать более эффективный способ — посчитать и сразу назвать число шесть.

Впрочем, став старше, мы начинаем замечать у чисел и слабые стороны. Да, они прекрасно экономят время, но немалой платой за это становится их абстрактность. Число шесть более эфемерно, чем «шесть рыбок» — именно потому, что оно универсально. Шесть может быть чего угодно: шесть тарелок, шесть пингвинов, шесть раз произнесенное слово «рыбка». Число создает некую неявную общность между приведенными примерами.

Рассматриваемые таким образом числа начинают казаться мистическими. Они, очевидно, существуют в некоем идеальном мире Платона, где-то над действительностью, и в этом смысле больше походят на другие возвышенные понятия (например, истина и справедливость) и меньше — на обычные объекты повседневной жизни. Чем активнее вы о них думаете, тем дальше они удаляются от реальности. Как появились числа? Изобрели ли их люди? Или лишь обнаружили?

Еще один нюанс заключается в том, что числа (как и все математические идеи) живут своей жизнью1. Они нам неподвластны, хотя и присутствуют в наших умах. Даже определив, что мы под ними понимаем, мы не можем предсказать, как они себя поведут. Они подчиняются определенным законам и имеют определенные свойства, индивидуальные особенности и способы объединения друг с другом, и мы ничего не в силах с этим поделать, кроме как наблюдать и пытаться понять. В этом смысле они похожи на атомы и звезды: объекты, которые также существуют по своим (неподконтрольным нам) законам и находятся вне зоны нашего сознания.

Эта двойственная природа чисел — принадлежность к небесам и земным делам, — возможно, их самая парадоксальная черта и особенность, которая делает их настолько полезными. Это то, что имел в виду физик Юджин Вигнер, когда писал о неблагоразумной эффективности математики в естественных науках2.

Для того чтобы прояснить, что я имею в виду под жизнью чисел и их поведением, которое мы не можем контролировать, давайте вернемся в отель «Мохнатые лапы». Предположим, что Хамфри как раз собрался передать заказ, но тут ему неожиданно позвонили пингвины из другого номера и тоже попросили такое же количество рыбы. Сколько раз Хамфри должен прокричать слово «рыбка» после получения двух заказов? Если бы он ничего не узнал о числах, то ему пришлось бы кричать столько раз, сколько всего пингвинов в обеих комнатах. Или, используя числа, он мог объяснить повару, что ему нужно шесть рыбок для одного номера и шесть для другого. Но то, что ему действительно необходимо, представляет собой новую концепцию — сложение. Как только он его освоит, он с гордостью скажет, что ему нужно шесть плюс шесть (или, если он позер, двенадцать) рыбок.

Это такой же творческий процесс, как и тот, когда мы только придумывали числа. Так же как числа упрощают подсчет по сравнению с перечислением по одному, сложение упрощает вычисление любой суммы. При этом тот, кто производит подсчет, развивается как математик. По-научному эту мысль можно сформулировать так: использование правильных абстракций приводит к более глубокому проникновению в суть вопроса и большему могуществу при его решении.

Вскоре, возможно, даже Хамфри поймет, что теперь он всегда может производить подсчет.

Однако, несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия. Как станет ясно из следующих глав, в математике наша свобода заключается в возможности задавать вопросы и настойчиво искать на них ответы, однако не изобретая их самостоятельно.

2. Каменная арифметика

Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).

Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.

С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики3. Тем не менее, она так же естественна, как и любопытство ребенка4.

В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков:

Вы вряд ли увидите тут что-то необычное. Так оно и есть. Пока мы не приступим к манипуляциям с числами, они выглядят примерно одинаково. Игра начинается, когда мы получаем задание.

Например, давайте посмотрим на наборы, в которых есть от 1 до 10 камней, и попробуем сложить из них квадраты. Это можно сделать только с двумя наборами — из 4 и 9 камней, поскольку 4 = 2 × 2 и 9 = 3 × 3. Мы получаем эти числа путем возведения в квадрат некоего другого числа (то есть раскладывая камни в виде квадрата).

Вот задача, имеющая большее число решений: надо узнать, из каких наборов получится прямоугольник, если разложить камни в два ряда с равным количеством элементов. Здесь подойдут наборы из 2, 4, 6, 8 или 10 камней; число должно быть четным. Если мы попробуем разложить в два ряда оставшиеся наборы с нечетным количеством камней, то у нас неизменно будет оставаться лишний камень.

Но не все потеряно для этих неудобных чисел! Если взять два таких набора, то лишние элементы найдут себе пару, и сумма получится четной: нечетное число + нечетное число = четное число.

Если распространить эти правила на числа, идущие после 10, и считать, что количество рядов в прямоугольнике может быть больше двух, то некоторые нечетные числа позволят сложить такие прямоугольники. Например, число 15 может составить прямоугольник 3 × 5.

Поэтому хотя 15, несомненно, нечетное число, оно является составным и может быть представлено в виде трех рядов по пять камней в каждом. Точно так же любая запись в таблице умножения дает собственную прямоугольную группу камешков.

Но некоторые числа, вроде 2, 3, 5 и 7, совершенно безнадежны. Из них нельзя выложить ничего, кроме как расположить их в виде простой линии (одного ряда). Эти странные упрямцы — знаменитые простые числа.

Итак, мы видим, что числа могут иметь причудливые структуры, которые наделяют их определенным характером. Но, чтобы представить весь спектр их поведения, надо отстраниться от отдельных чисел и понаблюдать за тем, что происходит во время их взаимодействия.

Например, вместо того чтобы сложить всего два нечетных числа, сложим все возможные последовательности нечетных чисел, начиная с 1:

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

Удивительно, но эти суммы всегда оказываются идеальными квадратами. (О том, что 4 и 9 можно представить в виде квадратов, мы уже говорили, а для 16 = 4 × 4 и 25 = 5 × 5 это тоже верно.) Быстрый подсчет показывает, что это правило справедливо и для больших нечетных чисел и, видимо, стремится к бесконечности. Но какая же связь между нечетными числами с их «лишними» камнями и классически симметричными числами, образующими квадраты? Правильно располагая камешки, мы можем сделать ее очевидной, что является отличительной чертой изящного доказательства.5


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Удовольствие от Х"

Книги похожие на "Удовольствие от Х" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Стивен Строгац

Стивен Строгац - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Стивен Строгац - Удовольствие от Х"

Отзывы читателей о книге "Удовольствие от Х", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.