» » » Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас


Авторские права

Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас

Здесь можно скачать бесплатно "Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Лайвбук, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас
Рейтинг:
Название:
Занимательное волноведение. Волненя и колебания вокруг нас
Издательство:
Лайвбук
Жанр:
Год:
2012
ISBN:
978-5-904584-33-7
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Занимательное волноведение. Волненя и колебания вокруг нас"

Описание и краткое содержание "Занимательное волноведение. Волненя и колебания вокруг нас" читать бесплатно онлайн.



Приготовьтесь: вас ждет кругосветное путешествие по всевозможным волнам: от серферских океанических до мозговых, радио-, микро-, инфракрасных, акустических, световых и многих прочих.

Претор-Пинни предлагает нам заново взглянуть на наш постоянно взволнованный мир.






«Волны наблюдались в ходе реализации почти всех корковых процессов, что было выявлено посредством картирования с использованием потенциалчувствительных меток», — рассказал мне профессор У. Эти волны могут распространяться по поверхности неокортекса самых разных животных: черепах, морских свинок, саламандр, обезьян… Они проявляются у высших животных при воздействии на органы обоняния, слуха, зрения или при соприкосновении с вибриссами.

Кроме того, профессор У обнаружил, что спиральные волны проходят через мозг крысы и тогда, когда она, что называется, клюет носом. «Можно предположить, что эти спиральные волны генерируются в результате импульсации соседних нейронов и позволяют коре больших полушарий головного мозга избежать контроля таламуса». (Таламус — область головного мозга под неокортексом, отвечающая за транспортировку информации от органов чувств, за исключением обоняния, к коре головного мозга. Другими словами, профессор У предполагает, что эти мозговые волны, проходя над неокортексом, препятствуют влиянию зон, задействованных в интеллектуальной деятельности, на таламус — что позволяет крысе задремать.) Он прибавил: «Нам кажется, что благодаря этим волнам становится возможной сложная умственная деятельность, в основе которой лежит функционирование сильно разветвленной сети нейронов, каждый из которых сам по себе довольно прост. Такова наша рабочая гипотеза».

Как и многие из тех, кто изучает колебания загадочных волн нейронного возбуждения, профессор У задается вопросом: что если волны играют решающую роль в разгадке извечной тайны — как миллиарды взаимосвязанных нейронов, каждый из которых по отдельности напоминает простенький «биологический выключатель», могут порождать такие сложные процессы, как способность чувствовать, мыслить? Даже если в случае с крысой все мыслительные процессы сводятся к тому, как бы добраться до съестного в буфете вашей кухни.

* * *

Ну что, вернемся к трем типам волн?

Второй тип — продольные волны. Это тот случай, когда колебания совершаются не из стороны в сторону, а взад- вперед, параллельно направлению распространения волны. Итак, если волны поперечные свойственны змеям, то волны продольные — дождевым червям.

Потому как эти маленькие пахари, без которых ни одному саду не цвести, передвигаются в почве, сокращая и расслабляя мышцы от начала к концу тельца. В том месте, где возникает мышечное напряжение, тельце червя сжимается и уплотняется, цепляясь за почву крошечными щетинками. Уплотнившаяся часть червя волнообразно продвигается по тельцу — и червь движется вперед. Движения сегментов тела червя, прорывающего в земле ход, характеризуются волнообразными колебаниями не из стороны в сторону — «змейкой», а вперед-назад, параллельно направлению движения червя.

Что бы садоводы делали без этих крошечных продольных волн?

Продольные волнообразные сокращения мышц дождевого червя сильно отличаются от поперечных колебаний двигающейся змеи. Но некоторые змеи используют и продольные волны. Происходит это тогда, когда они подкрадываются к добыче, стремясь остаться незамеченными, либо в том случае, когда их вес слишком велик, и они не в состоянии скользить по земле, извиваясь из стороны в сторону.

Одна из таких необычных змей, использующих при передвижении волны дождевого червя, — гигантский шестиметровый иероглифовый питон. Тяжеловесный питон двигается вперед благодаря мельчайшей ряби продольных волн, проходящих по его туловищу от головы до хвоста. Этот способ передвижения характерен и для удавов обыкновенных, которые тоже не из худеньких. Способ передвижения дождевого червя еще называют прямолинейным из-за того, что использующие его крупные змеи медленно продвигаются вперед по прямой линии, сокращая и расслабляя мышцы в змеином «танце живота».

В том месте, где мышцы сокращаются, бугрясь, чешуйки змеиного брюха начинают слега топорщиться. И этими сотнями «коготков» змея цепляется за почву — совсем как дождевой червь щетинками. Волна мышечных сокращений и расслаблений проходит по всей длине брюха — змея медленно двигается вперед, отталкиваясь от почвы чешуйками, которые сцепились с землей.

Некоторые змеи, неспособные скользить, извиваясь из стороны в сторону, проявляют чудеса изобретательности — подбираясь во время охоты поближе к жертве, они всем своим видом как бы говорят: «Не обращай на меня внимания, я всего лишь сухая ветка». Для прямолинейного передвижения неважно, насколько туловище змеи массивно, имеют значение лишь сильная мускулатура и дряблая кожа. Нам, людям, в этом видится противоречие: разве могут руки при накачанных бицепсах быть дряблыми?

Кажется, будто работа брюшных мышц, сокращения и расслабления которых образуют продольную волну, требует невероятных усилий, особенно если змея весит прилично. Однако на деле прямолинейное передвижение крайне экономично — мышцы напрягаются едва заметно. Гигантский иероглифовый питон при этом расходует всего двадцать калорий в день — это калорийность одного сырого перепелиного яйца.[9] Стыд и срам — такому толстяку не мешало бы больше двигаться!

* * *

Думаю, вам интересно будет узнать, что кора больших полушарий головного мозга у вас и у крысы не слишком различается по своей структуре. И раз крошечные спиральные волны скользят по поверхности мозга засыпающего грызуна, вполне возможно, что такие же микроскопические завихрения формируются и в вашей коре, когда вы лежите в кровати. Однако вы чувствуете: сон никак не идет — в голове крутится навязчивый мотивчик, скажем, «Ты прекрасна» Джеймса Бланта. В таком случае вам всего-то и надо, что привести в действие крошечные волны деполяризации. Если удастся хотя бы немного их расшевелить, заставить покружиться над волнообразными складками серого вещества, они выведут неокортекс из-под стимулирующего контроля таламуса и тем самым избавят вас от этой дурацкой песенки.

Вы скажете: такой уровень контроля над собой невозможен. Однако современный метод нейробиологической обратной связи позволяет не только наблюдать электрическую активность мозга, но и управлять ею. Хотите — верьте, хотите — нет, но сделать это можно, сидя за компьютерной игрой и используя одну лишь силу мысли. Представьте управление событиями на экране без джойстика, кнопок и прочих штуковин — всего-навсего парой прикрепленных к голове маленьких позолоченных электродов, которые улавливают электрические сигналы мозга, двигающие человечков на экране. При наличии соответствующей аппаратуры вы контролируете процесс, учась изменять ритм импульсации нейронов.

Впрочем, едва ли стоит мечтать о таком подарке под новогодней елкой. Компьютерные игры на аппарате довольно примитивные, они придуманы не для развлечения, а для выявления или, вернее, установления обратной связи с ритмичными электрическими импульсами, обычно скрытыми в вашей голове. Как только вы увидите их, научитесь ими управлять.

Но к чему вам все это? А вот к чему: если вы, не дай бог, страдаете эпилепсией или, что тоже неприятно, синдромом дефицита внимания, если разучиваете особенно трудное произведение для выступления в консерватории, ну или, скажем, вознамерились поймать пенальти в футбольном матче на чемпионате мира.

В 1924 году немецкий ученый Ганс Бергер открыл электроэнцефалографический (ЭЭГ) метод регистрации мозговой активности, обнаружив регулярную ритмичную пульсацию мозга. Он прикрепил посеребренные электроды к голове своего пятнадцатилетнего сына Клауса и измерил электрические сигналы, испускаемые нейронами головного мозга.

Когда один нейрон передает другому электрический за ряд, между ветвлениями одного нейрона и телом другого возникает синапсическая связь. И хотя прикладываемые к голове электроды, представлявшие собой металлические диски, были слишком грубы, чтобы уловить единичный импульс нейрона, первые нейробиологи, в том числе и Бергер, обнаружили, что они все же отмечают электрические импульсы в несколько тысячных вольт, возникающие в результате общей активности тысяч нейронов, или мозговых клеток, находящихся прямо под электродами в коре больших полушарий головного мозга.

Наблюдая за ритмами мозговых волн сына, Бергер обнаружил, что нейроны, пусть даже их и тысячи, пульсируют вовсе не беспорядочно, а в определенной последовательности. Пока сидевший во время эксперимента Клаус находился в спокойном, но собранном состоянии, показатели напряжения варьировались, однако сам ритм оставался постоянным — около 10 «циклов» (от отрицательного заряда к положительному) в секунду.{22}

Но поскольку у Бергера была еще и дочь четырнадцати лет, Илзе, он задействовал в эксперименте и ее. Ученый прикрепил электроды к голове дочери и дал ей задание: разделить число 196 на 7. Пока она в уме производила вычисления, интервалы между ритмичными сигналами сократились. Уж не знаю, что у них там в итоге произошло — может, отец окончательно достал подростков своими экспериментами, — только вскоре он занялся исследованием новорожденных и детей от года до трех у самых маленьких ритм не обнаружился, из чего Бергер сделал вывод: на стадии формирования (первые два месяца жизни) мозг младенца не испускает сколько-нибудь различимых импульсов. Очевидно, исследования настолько увлекли Бергера, что он взялся измерять пульсацию головного мозга у всех и вся. Прикрепив электроды к голове издыхающего пса, Бергер выяснил: по мере того, как жизнь одряхлевшей дворняги угасала, зубчатая линия, обозначавшая пульсацию ее мозга, постепенно вытягивалась в прямую.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Занимательное волноведение. Волненя и колебания вокруг нас"

Книги похожие на "Занимательное волноведение. Волненя и колебания вокруг нас" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Гэвин Претор-Пинни

Гэвин Претор-Пинни - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас"

Отзывы читателей о книге "Занимательное волноведение. Волненя и колебания вокруг нас", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.