» » » » Валерий Родиков - Приключения радиолуча


Авторские права

Валерий Родиков - Приключения радиолуча

Здесь можно скачать бесплатно "Валерий Родиков - Приключения радиолуча" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Молодая гвардия, год 1988. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Валерий Родиков - Приключения радиолуча
Рейтинг:
Название:
Приключения радиолуча
Издательство:
Молодая гвардия
Жанр:
Год:
1988
ISBN:
5-235-00094-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Приключения радиолуча"

Описание и краткое содержание "Приключения радиолуча" читать бесплатно онлайн.



Книга об одном из великих открытий в истории человечества — радиоволнах, о прошлом, настоящем и возможном будущем обширнейшей научно-технической отрасли — радиоэлектроники. Читатель также узнает о причудах радиоволн: радиолокационных миражах-«призраках», «ангелах», «летающих тарелках»; о том, вредны ли радиоизлучения…






Если «транзистор» — термин, изобретенный в середине XX века, то слово «полупроводник» было в ходу уже в XIX веке. В учебнике 1826 года «Начальные основания опытной физики», написанном Иваном Двигубским, есть такие слова: «Английский физик Кавендиш опытами доказал, что вода проводит электричество в 400 миллионов раз хуже металла; невзирая на сие, она еще не совсем худой проводник электричества. Тела, кои в рассуждении способности проводить электричество, занимающие как бы среднее место между проводниками и непроводниками, обыкновенно называются полупроводниками».

А теперь откроем последний Советский энциклопедический словарь и прочитаем значение слова «полупроводники»: «Вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов… и диэлектриков…» Как мы видим, несмотря на более чем 150-летнюю временную дистанцию, формулировки весьма схожи.

В 1821 году немецкий физик Томас Зеебек под впечатлением опытов Эрстеда провел следующий эксперимент. Он припаивал друг к другу два разнородных металла и соединял их медным проводником, а внутри петли, образованной проводником, помещал магнитную стрелку. При нагреве места спая магнитная стрелка отклонялась. Значит, нагретый спай служил источником электрического тока. Когда одним из элементов спая были теллур, сульфид свинца и некоторые другие материалы, стрелка реагировала более энергично. Через сто лет такие вещества станут называться полупроводниками. Пожалуй, это был первый сигнал о наличии у полупроводников необычайных свойств.

«Термоэлектрический эффект» — так окрестили впоследствии данное явление. На его основе в 1940 году в Ленинградском физико-техническом институте пол руководством Ю. П. Маслаковца была собрана и испытана первая экспериментальная полупроводниковая термобатарея. Материалом у нее (как и в опыте Зеебека) служил сульфид свинца.

В 1833 году Майкл Фарадей столкнулся с необычной ситуацией: он заметил, что электропроводность сульфида серебра растет с повышением температуры (у металлов все происходит наоборот). «…Если поискать, то можно будет найти немало таких веществ», — прозорливо заметил Фарадей. И действительно, впоследствии он обнаружил еще ряд образцов с необычной зависимостью сопротивления от температуры — одной из характерных особенностей полупроводников.

В 1873 году было открыто еще одно их свойство. Инженер-электрик из Лондона У. Смит объявил, что при освещении селен, химический элемент, открытый еще в начале века, изменяет свою электропроводность. Сам инженер занимался испытанием подводного телеграфного кабеля, для изоляции которого применялся селен. В расплавленном состоянии он застывал, образуя стекловидную массу с очень большим сопротивлением. Наблюдательный помощник Смита заметил, что на свету сопротивление селена становится меньше, чем в темноте. Сообщение вызвало живейший интерес. Физики бросились воспроизводить опыт и обнаружили, что селен, названный так в честь Луны, чувствителен даже к ее свету.

Свойству селена изменять свое сопротивление в зависимости от падающего света нашел интересное применение Грэхем Белл. Тот самый Белл, в честь которого названа логарифмическая единица отношений двух одноименных физических величин — бел. Правда, на практике мы сталкиваемся с более мелкой величиной: одной десятой бела — децибелом.

Так вот, Белл придумал прибор, передававший звук на большое расстояние при помощи светового луча, и назвал его фотофоном. Принцип действия прибора состоял в следующем. Гибкое плоское зеркало освещалось сильным источником света так, что отраженный луч попадал на приемном конце на линзу, фокусировавшую свет на селеновую пластинку, соединенную с батареей и телефоном. При передаче звук, направленный на заднюю поверхность зеркала, заставлял его колебаться. В такт с колебаниями «дрожал» и световой луч, а от этого менялась и освещенность селеновой пластины.

В цепи телефона возникали колебания электрического тока звуковой частоты, и речь отлично воспроизводилась в наушниках. Но фотофон быстро сошел со сцены: не выдержал соперничества с другим, более удачливым детищем Белла — телефоном.

Как говорят, все повторяется. Через сто лет на более высоком уровне — в лазерном исполнении — этот принцип возродился. В частности, в подслушивающих лазерных устройствах. Оконное стекло комнаты, где происходят переговоры, освещают снаружи лазерным лучом. Роль зеркала выполняет стекло, а вместо селеновой пластинки — лазерный приемник.

В 1874 году уже упоминавшийся К. Ф. Браун обнаружил выпрямляющую способность контакта металла и сернистого свинца: при одном направлении тока сопротивление контакта мало, при противоположном — очень велико. Позже, используя эту особенность, Браун создал детектор — полупроводниковый диод.

В последнее 20-летие XIX века полупроводники не были обделены вниманием ученых, и число опубликованных работ, им посвященных, исчислялось сотнями, так что уже в начале XX века сформировались правильные представления о природе электропроводимости полупроводников. Потом с началом эры радиоэлектронной лампы интерес к полупроводникам упал. Это продолжалось вплоть до конца первой мировой войны.

В 20-х и особенно в 30-х годах полупроводники вновь стали объектами научного любопытства. На вооружении ученых появилась квантовая теория и уравнение Эрвина Шредингера, которые могли объяснить поведение электронов в твердых телах. Большой вклад в экспериментальные и теоретические исследования полупроводниковых приборов внесли и советские ученые О. В. Лосев, Б. И. Давыдов, Я. И. Френкель, А. Ф. Иоффе. А в 1931 году вышла первая в нашей стране книга под названием «Полупроводники» известного ученого Д. Н. Наследова.

Многие изобретатели бились над созданием полупроводникового усилителя. В 1925 году в США, а в 1935 году в Англии были выданы патенты на прибор, который впоследствии назовут полевым транзистором. Но экспериментально его воспроизвести не удалось.

И вот в 1947 году к тройке американских ученых пришел заслуженный успех. Их настойчивость была вознаграждена появлением транзистора.

Так же как и лампа, транзистор может быть и электронным переключателем, и усилителем. Только в отличие от лампы он управляется током, а не напряжением. В лампе через ее вход (участок сетка-катод) в большинстве режимов работы ток пренебрежимо мал, так что с ним можно было не считаться. А в транзисторе входной ток приходилось учитывать. Хоть небольшой, но есть. Он течет через определенную часть транзистора, и его изменения вызывают соответствующие изменения большего тока, текущего через весь транзистор. Поэтому транзистор иногда называли усилителем тока. И названия электродам в транзисторе придумали другие. Если провести аналогию с радиолампой, то роль катода в нем выполняет эмиттер (выпускает носители электрического тока), анода — коллектор (собирает их), а сетки — база.

В современной электронике получили распространение два типа транзисторов — биполярные и полевые. Кстати, прибор, созданный Бардиным и Браттейном, относится к биполярным транзисторам, а запатентованные в 1925 и 1935 годах — к полевым. Хотя запатентованы полевые транзисторы много раньше — применять их стали много позже: в конце 50-х — начале 60-х годов. Несмотря на различия между ними, принципы работы биполярного и полевого транзистора похожи. Правда, соответствующие электроды у последнего носят иные названия: эмиттер — это исток, коллектор — сток, а база — затвор. Проходящий через полевой транзистор ток между истоком и стоком управляется электрическим полем, возникающим в области, прилегающей к затвору, за счет поданного на него напряжения (поэтому и название — полевой транзистор), а затвор находится как раз на пути между истоком и стоком.

Электрическое поле может как бы сужать диаметр канала в полупроводнике, по которому бегут электроны от истока к стоку, или вообще перекрывать его.

Похожая картина наблюдается в поливочном шланге, если наступить на него ногой. Можно уменьшить напор воды, а можно и совсем перекрыть воду. Роль ноги в полевом транзисторе и выполняет электрическое поле у затвора. Входной ток у полевого транзистора, протекающий в нем между истоком и затвором, может быть очень малым. В этом отношении полевые транзисторы приближаются к вакуумным лампам.

Поначалу американская и западноевропейская промышленность не проявили интереса к новому прибору. Трудно было в одночасье сбросить со счетов почти три десятилетия разработки и совершенствования радиоламп разных конструкций. А ведь транзисторы требовали абсолютно новых методов производства. Лампы же применялись не только в радиоприемниках и телевизорах, но и в передатчиках радаров, систем связи, телевизионных и радиопередающих станциях, словом, и там, где требуются большие мощности излучения. (Кстати, в этих областях лампы еще и по сей день не сошли со сцены.)


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Приключения радиолуча"

Книги похожие на "Приключения радиолуча" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Валерий Родиков

Валерий Родиков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Валерий Родиков - Приключения радиолуча"

Отзывы читателей о книге "Приключения радиолуча", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.